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Abstract. Many iterative algorithms like that Picard, Mann, Ishikawa and S-iteration are

very useful to elucidate the fixed point problems of a nonlinear operators in various topolog-

ical spaces. The recent trend for elucidate the fixed point via inertial iterative algorithm, in

which next iterative depends on more than one previous terms. The purpose of the paper

is to establish convergence theorems of new inertial Picard normal S-iteration algorithm for

nonexpansive mapping in Hilbert spaces. The comparison of convergence of InerNSP and

InerPNSP is done with InerSP (introduced by Phon-on et al. [25]) and MSP (introduced by

Suparatulatorn et al. [27]) via numerical example.

1. Introduction

Fixed point theory plays very crucial role in the fields of pure and applied
mathematics as well as in many other branches of science (see [14, 15, 19,
29,30] and references therein). One of the most fundamental problems in the
operator theory is to find fixed points of nonlinear operators (see [8–10]). Many
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problems arising in different areas such as image reconstruction and signal
processing [6], variational inequalities [22], convex feasibility problems [3] can
be modeled in the form of fixed point problems:

Find x ∈ C such that

Tx = x, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H and
T : C → C is a nonlinear operator. The solution set of the fixed point
problem (1.1) is denoted by Fix(T ). As we know, many literatures have been
published in both direct and iterative technique to find the fixed points of
nonexpansive mappings. The iterative technique is used to solve problems in
information theory, game theory, optimization etc., by formulating them into
fixed point problems. One of the most used iterative techniques was introduced
by Mann [20], which is given as follows:

For any initial point x1 ∈ C,

xn+1 = (1− an)xn + anTxn, ∀n ∈ N, (1.2)

where {an} is a real sequence in (0, 1). If T is a nonexpansive mapping and
iteration parameter an satisfies the condition

∑∞
n=0 an(1 − an) = ∞. Then,

sequence {xn} defined by (1.2) converges weakly to a fixed point of T .

It is well known that the Mann iteration method for the approximation
of fixed points of pseudocontractive mappings may not well behave (see [7]).
To become free of this problem, Ishikawa [16] introduced an iterative tech-
nique, which is extensively studied for the approximation of fixed points of
pseudocontractive and nonexpansive mappings by many authors in different
spaces (see for example Takahashi et al. [28] and Dotson [13]). Agarwal et
al. [1] introduced an iteration method which is called S-iteration method. Its
convergence rate is faster than both Mann and Ishikawa iteration method for
contraction mappings. The S-iteration algorithm defined by

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn, ∀n ∈ N, (1.3)

where {αn} and {βn} are sequences in (0, 1) with
∑∞

n=1 αnβn(1 − βn) = ∞.
The algorithmic design of S-iteration method (1.3) is comparatively different
and independent of Mann and Ishikawa iteration methods, that is, neither
Mann nor Ishikawa iteration can be reduced into S-iteration and vice-versa. In
2011, [26] introduced another form of S-iteration, named as normal S-iteration
method which is defined by

xn+1 = Tyn,

yn = (1− βn)xn + βnTxn, ∀n ∈ N, (1.4)



Inertial Picard normal S-iteration process 997

where {βn} is sequence in (0, 1). Normal S-iteration (1.4) is also known as
Hybrid-Picard Mann iteration method [18].

The particular interest is an inertial iteration methods, which are used in
computing fixed points for nonexpansive mappings from the algorithms men-
tioned above, we observe that the next iterate of algorithms depends on the
previous iterate only, but the defining property of inertial method is that the
next iterate depends on more than one previous iterates.

The inertial Mann algorithm, the combination of inertial extrapolation and
Mann algorithm, is introduced by Mainge [21] in 2008. Nakajo and Taka-
hashi [23] introduced the CQ-algorithm, the modification of Mann algorithm.
Then Dong et al. [12] introduced modified inertial Mann algorithm, combina-
tion of inertial extrapolation and modified Mann algorithm and inertial CQ-
algorithm, combination of inertial extrapolation and CQ-algorithm. In 2019,
Phon-on et al. [25] introduced the inertial S-iteration process, combination
of inertial extrapolation and modified S-iteration process, whereas modified
S-iteration process is introduced by Suparatulatorn et al. [27].

In Section 2, we present some basic definitions and results. We introduce
the inertial Picard normal S-iteration process (InerPNSP), combination of in-
ertial extrapolation and Picard normal S-iteration process, whereas Picard
normal S-iteration process is introduced by Kadioglu et al. [17] and present
the weak and strong convergence of InerPNSP in Section 3. Also, we intro-
duce the inertial normal S-iteration process (InerNSP), combination of inertial
extrapolation and normal S-iteration process, whereas normal S-iteration pro-
cess is introduced by Sahu [26] and present weak convergence of InerNSP in
Section 4. The rate of convergence of InerPNSP, InerNSP, MSP and InerSP
is discussed via numerical example in Section 5.

2. Preliminaries

In this section, we summarize notations, definitions and lemmas which play
significant role in convergence analysis of our algorithm. Let X be a Banach
space with the norm ‖ · ‖. Throughout this paper, we adopt the following
notations:

• xn → x stands the strong convergence of sequence {xn} to x.
• xn ⇀ x stands the weak convergence of sequence {xn} to x.
• A set of fixed points of mapping T : X → X is denoted by

Fix(T ) = {x ∈ X : Tx = x}.

• Assume that X is a Banch space and C is a nonempty subset of Banach
space X. Then a mapping T : C → C is said to be nonexpansive, if
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for all x, y ∈ X
‖Tx− Ty‖ ≤ ‖x− y‖.

Lemma 2.1. ( [4]) Assume that H is a real Hilbert space. Then following
inequality holds:

||cx+ (1− c)y||2 ≤ c||x||2 + (1− c)||y||2 − c(1− c)||x− y||2, (2.1)

where c ∈ R, x, y ∈ H.

Lemma 2.2. ([23]) Assume that X is a uniformly convex Banach space and
{sn} is sequence in [δ, 1 − δ] for δ ∈ (0, 1). Assume that sequences {xn}
and {yn} in X are such that lim infn→∞ ‖xn‖ ≤ c, lim infn→∞ ‖yn‖ ≤ c, and
lim infn→∞ ‖snxn + (1− sn)yn‖ = c for some c ≥ 0. Then

lim inf
n→∞

‖xn − yn‖ = 0.

Definition 2.3. ([24]) Assume that X is a Banach space and sequence {xn}
in X converges weakly to x. Then X is said to have Opial’s property, if

lim inf
n→∞

‖xn − x‖ ≤ lim inf
n→∞

‖xn − y‖

for all y ∈ X, y 6= x.

Lemma 2.4. ([11]) Assume that X is a Banach space with Opial’s property.
Assume that {xn} is a sequence in X and x, y ∈ H such that limn→∞ ‖xn−x‖
and limn→∞ ‖xn − y‖ exist. If {xni} and {xnj} are two subsequences of {xn}
converge to x and y, respectively. Then x = y.

Lemma 2.5. ([2]) Assume that {rn}, {dn} and {qn} are sequences in [0,∞)
such that

rn+1 ≤ rn + qn(rn − rn−1) + dn
for all n ≥ 1,

∑∞
n=1 dn < ∞ and there is real number q with qn < q < 1 for

all n ≥ 1. Then

(1)
∑

n≥1[rn − rn−1]+ <∞ where [a]+ = max{a, 0}.
(2) there is r∗ ∈ [0,∞) such that limn→∞ rn = r∗.

Lemma 2.6. ([4]) Assume that C is a nonempty convex closed subset of a
Hilbert space H and T : C → H is a nonexpansive mapping. Assume that
{xn} is a sequence in C and x ∈ H such that xn ⇀ x as n → ∞. Then
x ∈ Fix(T ).

Lemma 2.7. ([4]) Assume that C is a nonempty subset of a Hilbert space
H. Assume that {xn} is a sequence in C and x ∈ H such that the following
conditions holds:
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(1) for all x ∈ C, limn→∞ ‖xn − x‖ exists.
(2) every sequential weak cluster point of {xn} is in C.

Then, the sequence {xn} converges weakly to a point in C.

We can compare the rate of convergence of two iterative methods by the
following result of Berinde [5].

Definition 2.8. Assume that {sn} and {tn} are two sequences of nonnegative
numbers which converge to s and t, respectively. Also, assume that

lim
n→∞

|sn − s|
|tn − t|

= L.

(1) If L = 0, then the sequence {sn} converges to s is faster than sequence
{tn} converges to t.

(2) If 0 < L < ∞, then sequences {sn} and {tn} have same rate of con-
vergence.

3. Inertial Picard normal S-iteration process and its
convergence analysis

In this section, we introduce Inertial Picard normal S-iteration process
(InerPNSP), by combining the inertial extrapolation and Picard normal S-
iteration process and study convergence analysis for finding fixed points of
nonexpansive mapping in the framework of a Hilbert space.

First we introduce our InerPNSP algorithm.

Let C be a nonempty closed convex subset of a Banach space X and
T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅.

InerPNSP Algorithm:

(1) Initialization: Select x0, x1 arbitrarily.
(2) Iteration Step: Select {αn}, {βn} and {γn} as iteration parameters

in [0, 1] and compute (n+ 1)th iterative term as follows:
wn = xn + γn(xn − xn−1),
zn = (1− βn)wn + βnT (wn),

yn = (1− αn)zn + αnT (zn),

xn+1 = Tyn,

(3.1)

where {αn}, {βn}, {γn} satisfy:

(A1)
∑∞

n=1 γn < ∞, γn ⊂ [0, γ], 0 ≤ γ < 1, {αn}, {β} ⊂ [δ, 1 − δ] for
some δ ∈ (0, 0.5);
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(A2) {T (wn)− wn} is bounded;
(A3) {T (wn)− p} is bounded.

Theorem 3.1. Let X be a Hilbert space. Let p ∈ F = Fix(T ). Let the se-
quence {xn} generated by (3.1) satisfying condition (A1), (A2) and (A3). Then

(1) limn→∞ ‖xn − p‖ exists.
(2) limn→∞ ‖xn − T (xn)‖ = 0.

Proof. Since T is a nonexpansive mapping, by triangular inequality,

‖zn − p‖ = ‖(1− βn)wn + βnT (wn)− p‖
≤ (1− βn)‖wn − p‖+ βn‖T (wn)− p‖
≤ (1− βn)‖wn − p‖+ βn‖wn − p‖
= ‖wn − p‖, ∀n ∈ N. (3.2)

Using (3.1) and (3.2),

‖yn − p‖ = ‖(1− αn)zn + αnT (zn)− p‖
≤ (1− αn)‖zn − p‖+ αn‖T (zn)− p‖
≤ (1− αn)‖zn − p‖+ αn‖zn − p‖
≤ ‖wn − p‖. (3.3)

Using (3.1), (3.2) and (3.3),

‖xn+1 − p‖ = ‖T (yn)− p‖
≤ ||wn − p||. (3.4)

Now we will prove {wn − p} is bounded. By condition (A1) and (A2),

‖wn − p‖ = ‖wn − T (wn) + T (wn)− p‖
≤ ‖T (wn)− wn‖+ ‖T (wn)− p‖
≤ M

for some M ∈ (0,∞). Thus {wn − p} is bounded and by (3.4), {xn − p} and
{xn − xn−1} are bounded. By (2.1),

‖wn − p‖2 = ‖xn + γn(xn − xn−1 − p)‖2

= ‖(1 + γn)(xn − p)− γn(xn−1 − p)‖2

= (1 + γn)‖xn − p‖2 − γn‖xn−1 − p‖2

+γn(1 + γn)‖xn − xn−1‖2. (3.5)

Using (3.4) and (3.5), we have

‖xn+1 − p‖2 ≤ ‖wn − p‖2

= (1 + γn)‖xn − p‖2 − γn‖xn−1 − p‖2

+γn(1 + γn)‖xn − xn−1‖2. (3.6)
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Let rn = ‖xn − p‖2. Then by (3.6)

rn+1 ≤ rn + γn(rn − rn−1) + dn,

where dn = γn(1 + γn)‖xn − xn−1‖2.
By condition (A1),

∞∑
n=1

dn =

∞∑
n=1

γn(1 + γn)‖xn − xn−1‖2

≤
∞∑
n=1

γ(1 + γ)(2M)2

< ∞.

From Lemma 2.5, there is r∗ ∈ [0,∞) such that limn→∞ rn = r∗. Therefore
limn→∞ ‖xn − p‖2 exists and hence limn→∞ ‖xn − p‖ exists.

Now we will prove limn→∞ ‖xn − T (xn)‖ = 0.
Assume that c = limn→∞ ‖xn − p‖. Since T is nonexpansive,

‖xn − T (xn)‖ ≤ ‖xn − p‖+ ‖T (xn)− p‖
≤ ‖xn − p‖+ ‖xn − p‖
= 2‖xn − p‖. (3.7)

If c = 0, then by (3.7), ‖xn − T (xn)‖ → 0 as n→∞.
Assume that c > 0. Now

∑∞
n=1 dn < ∞ implies that limn→∞ dn = 0. From

(3.5), we have

lim
n→∞

‖wn − p‖2 = lim
n→∞

(
(1 + γn)‖xn − p‖2 − γn‖xn−1 − p‖2

+γn(1 + γn)‖xn − xn−1‖2
)

= lim
n→∞

‖xn − p‖2

= c2,

which implies limn→∞ ‖wn − p‖ = c. Therefore

lim sup
n→∞

‖yn − p‖ ≤ lim sup
n→∞

‖wn − p‖

= c. (3.8)

Now we claim that lim infn→∞ ‖yn − p‖ ≥ c. Since T is a nonexpansive
mapping, by (3.1)

‖xn+1 − p‖ = ‖T (yn)− p‖
≤ ‖yn − p‖.
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On taking limit inferior both sides

lim inf
n→∞

‖xn+1 − p‖ ≤ lim inf
n→∞

‖yn − p‖

and hence c ≤ lim inf
n→∞

‖yn − p‖. (3.9)

By (3.8) and (3.9),

lim
n→∞

‖yn − p‖ = c.

Now, by (3.2),

lim sup
n→∞

‖zn − p‖ ≤ lim sup
n→∞

‖wn − p‖

= c. (3.10)

Since T is a nonexpansive mapping, by (3.1)

‖xn+1 − p‖ = ‖T (yn)− p‖
≤ ‖yn − p‖
≤ ‖(1− αn)zn + αnT (zn)− p‖
≤ (1− αn)‖zn − p‖+ αn‖T (zn)− p‖
≤ (1− αn)‖zn − p‖+ αn‖zn − p‖
= ‖zn − p‖.

On taking limit inferior both sides

lim inf
n→∞

‖xn+1 − p‖ ≤ lim inf
n→∞

‖zn − p‖

and hence c ≤ lim inf
n→∞

‖zn − p‖. (3.11)

By (3.10) and (3.11),

lim
n→∞

‖zn − p‖ = c.

Now

lim sup
n→∞

‖T (wn)− p‖ ≤ lim sup
n→∞

‖wn − p‖ ≤ c,

lim sup
n→∞

‖(1− βn)(wn − p) + βn(T (wn)− p)‖ ≤ lim sup
n→∞

‖zn − p‖ ≤ c,

by Lemma 2.2,

lim
n→∞

‖T (wn)− wn‖ = 0. (3.12)

Now

lim sup
n→∞

‖T (zn)− p‖ ≤ lim sup
n→∞

‖zn − p‖ ≤ c,

lim sup
n→∞

‖(1− αn)(zn − p) + αn(T (zn)− p)‖ ≤ lim sup
n→∞

‖zn − p‖ ≤ c,

by Lemma 2.2,

lim
n→∞

‖T (zn)− zn‖ = 0.
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Now, since zn − wn = βn(T (wn)− wn), by (3.12)

0 ≤ lim
n→∞

‖zn − wn‖

= lim
n→∞

βn‖T (wn)− wn‖

≤ lim
n→∞

‖(T (wn)− wn)‖

= 0. (3.13)

Now, since yn − zn = αn(T (zn)− zn), by (3)

0 ≤ lim
n→∞

‖yn − zn‖

= lim
n→∞

αn‖T (zn)− zn‖

≤ lim
n→∞

‖(T (zn)− zn)‖

= 0. (3.14)

Now, by (3.13) and (3.14),

0 ≤ lim
n→∞

‖yn − wn‖

≤ lim
n→∞

‖yn − zn‖+ lim
n→∞

‖zn − wn‖

= 0. (3.15)

Now, since wn − xn = γn(xn − xn−1), by (3.4)

0 ≤ lim
n→∞

‖wn − xn‖

= lim
n→∞

γn‖xn − xn−1‖

= 0. (3.16)

Now, using (3.12) and (3.16),

0 ≤ lim
n→∞

‖Twn − xn‖

≤ lim
n→∞

‖Twn − wn‖+ lim
n→∞

‖wn − xn‖

= 0. (3.17)

Using (3.15) and (3.16),

0 ≤ lim
n→∞

‖xn − yn‖

≤ lim
n→∞

‖xn − wn‖+ lim
n→∞

‖wn − yn‖

= 0. (3.18)



1004 S. Dashputre, Padmavati and K. Sakure

Now, since T is a nonexpansive and using (3.13), (3.14), (3.17), (3.18), we
have

0 ≤ lim
n→∞

‖T (xn)− xn‖

= lim
n→∞

‖T (xn)− T (yn)‖+ lim
n→∞

‖T (yn)− T (zn)‖

+ lim
n→∞

‖T (zn)− T (wn)‖+ lim
n→∞

‖T (wn)− xn‖

= lim
n→∞

‖xn − yn‖+ lim
n→∞

‖yn − zn‖+ lim
n→∞

‖zn − wn‖

+ lim
n→∞

‖T (wn)− xn‖

= 0.

Therefore, we have limn→∞ ‖T (xn)− xn‖ = 0. �

Theorem 3.2. Assume that H is a Hilbert space. Also assume that T : H →
H is a nonexpansive mapping with F = Fix(T ) 6= ∅. Then the sequence {xn}
generated by (3.1) weakly converges to fixed point of T .

Proof. Assume that p ∈ F. Then from Theorem 3.1, limn→∞ ||xn − p|| exists,
therefore {xn} is bounded. Assume that {xni} and {xnj} are two subsequences
of the seqeunce {xn} with weak limits p1 and p2, respectively. Again by
Theorem 3.1, limn→∞ ||xni − T (xni)|| = 0 and limn→∞ ||xnj − T (xnj )|| =
0. Since every Hilbert space has Opial’s property (see [24]) and by Lemma
2.6, T (p1) = p1 and T (p2) = p2, that is, p1, p2 ∈ F. From Theorem 3.1,
limn→∞ ||xn− p1|| and limn→∞ ||xn− p2|| exist and both sequences {xni} and
{xnj} weakly converge to p1 and p2, respectively. From Lemma 2.4, p1 = p2.
Thus {xn} converges weakly to fixed point of T . �

4. Inertial normal S-iteration process and its convergence
analysis

In this section, we introduce Inertial normal S-iteration process (InerNSP),
by combining the inertial extrapolation and normal S-iteration process and
study convergence analysis for finding fixed points of nonexpansive mapping
in the framework of Hilbert space.

First we introduce our InerNSP algorithm.

Let C be a nonempty closed convex subset of real Hilbert space H and
T : C → C be nonexpansive mapping with Fix(T ) 6= ∅.

InerNSP Algorithm:

(1) Initialization: Select x0, x1 arbitrarily.
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(2) Iteration Step: Select {αn}, {βn} and {γn} as iteration parameters
in [0, 1] and compute (n+ 1)th iterative term as follows:

wn = xn + γn(xn − xn−1),
yn = (1− αn)wn + αnT (wn),

xn+1 = Tyn,

(4.1)

where {αn}, {γn} satisfy:

(B1)
∑∞

n=1 γn < ∞, γn ⊂ [0, γ], 0 ≤ γ < 1, {αn} ⊂ [δ, 1 − δ] for some
δ ∈ (0, 0.5);

(B2) {T (wn)− wn} is bounded;

(B3) {T (wn)− p} is bounded.

Theorem 4.1. Let X be a Hilbert space. Let p ∈ F = Fix(T ). Let the
sequence {xn} generated by (4.1) satisfying condition (B1), (B2) and (B3).
Then

(1) limn→∞ ‖xn − p‖ exists.
(2) limn→∞ ‖xn − T (xn)‖ = 0.

Proof. On setting βn = 0 in Theorem 3.1, we get the desired result. �

Theorem 4.2. Assume that H is a Hilbert space. Also assume that T : H →
H is a nonexpansive mapping with F = Fix(T ) 6= ∅. Then the sequence {xn}
generated by (4.1) weakly converges to a fixed point of T .

Proof. The proof follows from Theorem 3.2. �

5. Numerical result

In this section, we present a numerical example to find the fixed point of
nonexpansive mapping via inertial Picard normal S-iteration process (3.1).

Example 5.1. Let us consider the mapping T : R2 → R2 defined by

T (u, v) =
(

6 +
u

7
, 4 +

v

5

)
and euclidean norm ‖ · ‖2 on R2. The mapping T is a nonexpansive mapping.
Indeed,

‖T (u1, v1)− T (u2, v2)‖2 =
∥∥∥(6 +

u1
7
, 4 +

v1
5

)
−
(

6 +
u2
7
, 4 +

v2
5

)∥∥∥
2

=

√(u1 − u2
7

)2
+
(v1 − v2

5

)2
≤

√
(u1 − u2)2 + (u1 − u2)2

= ‖(u1, v1)− (u2, v2)‖2.
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The point p = (7, 5) is fixed point of mapping T . Assume that αn = βn =

2n
3n+21 , γn =

{
1

(n+1)2
n < 109

0.15 n ≥ 109
and initial guesses are x0 = (600,−5) and

x1 = (900, 10).

Table 1. Comparison of convergence of inertial Picard normal
S-iteration process, inertial normal S-iteration process, modi-
fied S-iteration process and inertial S-iteration process

n InerPNSP InerNSP MSP InerSP

1 (900,10) (900,10 ) (900,10) (900,10)
2 (177.4285714, 9) (177.4285714, 9) (134.5714286, 6) (177.4285714,9)
3 (5.741826322,

5.653333333)
(5.645043732,
5.7)

(23.00066812,
5.183333333)

(5.549501944,
5.745833333)

4 (4.785991504,
5.043742763)

(4.450542359,
5.058765432)

(9.01375912,
5.033652898)

(4.119769899,
5.075502464)

5 (6.777000325,
5.00079639)

(6.689390591,
5.00313963)

(7.257121648,
5.006200872)

(6.590318015,
5.006506274)

6 (6.987146952,
4.999880259)

(6.974982589,
5.000147444)

(7.03295356,
5.001138952)

(6.957828452,
5.000714057)

7 (6.999418204,
4.999982434)

(6.998140484,
5.000010007)

(7.004208033,
5.000207654)

(6.995735861,
5.000103803)

8 (6.999974339,
4.99999824)

(6.999854125,
5.000001086)

(7.000533379,
5.000037503)

(6.999541819,
5.000016886)

9 (6.999998763,
4.999999837)

(6.999987847,
5.000000139)

(7.000066987,
5.000006704)

(6.999948466,
5.00000283)

10 (6.999999935,
4.999999985)

(6.999998957,
5.000000018)

(7.000008329,
5.000001186)

(6.999994075,
5.000000477)

11 (6.999999997,
4.999999999)

(6.99999991,
5.000000002)

(7.000001025,
5.000000208)

(6.999999313,
5.000000081)

12 (7,5) (6.999999992, 5) (7.000000125,
5.000000036)

(6.99999992,
5.000000014)

13 (6.999999999, 5) (7.000000015,
5.000000006)

(6.999999991,
5.000000002)

14 (7,5) (7.000000002,
5.000000001)

(6.999999999,
5)

15 (7,5) (7,5)
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Table 2. Error estimates of InerPNSP, InerNSP, MSP and InerSP

n InerPNSP InerNSP MSP InerSP

1 893.0139977 893.0139977 893.0139977 893.0139977
2 170.4755055 170.4755055 127.5753479 170.4755055
3 1.417690180 1.525092289 16.00171839 1.631015626
4 2.214440572 2.550134827 2.014040295 2.881219543
5 0.223001097 0.310625277 0.257196409 0.409733646
6 0.012853605 0.025017845 0.032973237 0.042177593
7 0.000582061 0.001859543 0.004213153 0.004265403
8 0.000001248 0.000145880 0.000534696 0.000458492
9 0.000000066 0.000012154 0.000067322 0.000051612
10 0.000000004 0.000001043 0.000008413 0.000005944
11 0 0.000000090 0.000001046 0.000000692
12 0.000000008 0.000000130 0.000000081
13 0 0.000000016 0.000000010
14 0.000000002 0.000000001
15 0 0

Figure 1. Comparison among errors
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From Table 1 and Figure 1, it is clear that InerPNSP takes less iterations
to approximate fixed point p = (7, 5) of nonexpansive mapping T defined in
Example 1 than InerNSP, MSP and InerSP. Assume that {xn}, {sn}, {tn} and
{un} are the sequences generated by InerPNSP, InerNSP, MSP and InerSP,
respectively. From Table 2,

(1) ||xn−p||2 ≤ ||sn−p||2 for all n ≥ 2 and limn→∞
||xn−p||2
||sn−p||2 = 0, therefore

{xn} converges faster than {sn},
(2) ||xn−p||2 ≤ ||tn−p||2 for all n ≥ 2 and limn→∞

||xn−p||2
||tn−p||2 = 0, therefore

{xn} converges faster than {tn},
(3) ||xn−p||2 ≤ ||un−p||2 for all n ≥ 2 and limn→∞

||xn−p||2
||un−p||2 = 0, therefore

{xn} converges faster than {un},
(4) ||sn− p||2 ≤ ||tn− p||2 for all n ≥ 4 and limn→∞

||sn−p||2
||tn−p||2 = 0, therefore

{sn} converges faster than {tn},
(5) ||sn−p||2 ≤ ||un−p||2 for all n ≥ 2 and limn→∞

||sn−p||2
||un−p||2 = 0, therefore

{sn} converges faster than {un}.
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