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STRONG AND ∆-CONVERGENCE OF A FASTER

ITERATION PROCESS IN HYPERBOLIC SPACE

Sezgin Akbulut and Birol Gunduz

Abstract. In this article, we first give metric version of an iteration
scheme of Agarwal et al. [1] and approximate fixed points of two finite
families of nonexpansive mappings in hyperbolic spaces through this iter-
ation scheme which is independent of but faster than Mann and Ishikawa
scheme. Also we consider case of three finite families of nonexpansive
mappings. But, we need an extra condition to get convergence. Our con-
vergence theorems generalize and refine many know results in the current
literature.

1. Introduction

Throughout the article, N denotes the set of positive integers and I denotes
the set of first N natural numbers. Let (X, d) be a metric space and K be
a nonempty subset of X . A selfmap T on K is said to be nonexpansive if
d (Tx, T y) ≤ d (x, y). Denote by F (T ) the set of fixed points of T and by
F = ∩N

i=1 (F (Ti) ∩ F (Si)) the set of common fixed points of two finite families
of mappings {Ti : i ∈ I} and {Si : i ∈ I}.

We know that Mann and Ishikawa iteration processes are defined for given
x1 in K (a subset of Banach space) respectively as:

(1) xn+1 = (1− αn)xn + αnTxn,

and

(2)

{

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn) xn + βnTxn, n ∈ N,

where {αn} and {βn} are in (0, 1).
Recently, Agarwal et al. [1] introduced the following iteration process:

(3)

{

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn) xn + βnTxn, n ∈ N.
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They showed that this process converges at a rate same as that of Picard
iteration and faster than Mann and Ishikawa iterations for contractions.

Obviously the above process deals with one mapping only. The case of two
mappings in iterative processes has also remained under study since Das and
Debata [3] gave and studied a two mappings process. Also see, for example,
[13] and [25]. Note that two mappings case, that is, approximating the common
fixed points, has its own importance as it has a direct link with the minimization
problem, see for example [24].

In [11], Khan et al. modified the iteration process (3) to the case of two
mappings as follows.

(4)

{

xn+1 = (1− αn)Txn + αnSyn,

yn = (1− βn) xn + βnTxn, n ∈ N,

where {αn} and {βn} are in (0, 1).
It is to be noted that (4) reduces to (3) when S = T and (1) if T is identity

mapping.
The purpose of this article is to investigate ∆-convergence as well as strong

convergence of algorithm (4) for two finite families of nonexpansive maps in
the more general setup of hyperbolic spaces. At first glance, it looks like the
process will also work for three families of nonexpansive mappings without any
difficulty. However, this is not the case. We must impose an extra condition
on the mappings. Our results can be viewed as refinement and generalization
of several well-known results in CAT(0) and uniformly convex Banach spaces.

A hyperbolic space [16] is a triple (X, d,W ) where (X, d) is a metric space
and W : X2 × [0, 1] → X is such that

W1. d (u,W (x, y, α)) ≤ (1− α) d (u, x) + αd (u, y)
W2. d (W (x, y, α) ,W (x, y, β)) = |α− β| d (x, y)
W3. W (x, y, α) = W (y, x, (1− α))
W4. d (W (x, z, α) ,W (y, w, α)) ≤ (1− α) d (x, y) + αd (z, w)

for all x, y, z, w ∈ X and α, β ∈ [0, 1]. If a hyperbolic space (X, d,W ) satisfies
only (W1), then it coincides with the convex metric space introduced by Taka-
hashi [23]. A subset K of a hyperbolic space X is convex if W (x, y, α) ∈ K for
all x, y ∈ K and α ∈ [0, 1].

Different notions of “hyperbolic space” [6, 7, 14, 15] can be found in the liter-
ature. We work in the setting of hyperbolic spaces as introduced by Kohlenbach
[16], which are slightly more restrictive than the spaces of hyperbolic type [6] by
(W4), but more general then the concept of hyperbolic space from [19]. Spaces
like CAT(0) and Banach are special cases of hyperbolic space. The class of hy-
perbolic spaces also contains Hadamard manifolds, Hilbert ball equipped with
the hyperbolic metric [7], R-trees and Cartesian products of Hilbert balls, as
special cases.
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A hyperbolic space (X, d,W ) is said to be uniformly convex [22] if for all
u, x, y ∈ X , r > 0 and ε ∈ (0, 2], there exists a δ ∈ (0, 1] such that

d (x, u) ≤ r

d (y, u) ≤ r

d (x, y) ≥ εr







⇒ d

(

W

(

x, y,
1

2

)

, u

)

≤ (1− δ) r.

A map η : (0,∞) × (0, 2] → (0, 1] which provides such a δ = η (r, ε) for
given r > 0 and ε ∈ (0, 2], is called modulus of uniform convexity. We call η
monotone if it decreases with r (for a fixed ε).

The concept of ∆-convergence in a metric space was introduced by Lim [18]
and its analogue in CAT(0) spaces has been investigated by Dhompongsa and
Panyanak [4]. In [9], Khan et al. continued the investigation of ∆-convergence
in the general setup of hyperbolic spaces. Later on, some authors discussed
the convergence of the iterative process in hyperbolic spaces (see, for example,
[5, 20]).

Now, we collect some basic concepts.
Let {xn} be a bounded sequence in a hyperbolic space X . For x ∈ X , define

a continuous functional r (·, {xn}) : X → [0,∞) by:

r (x, {xn}) = lim sup
n→∞

d (x, xn) .

The asymptotic radius ρ = r ({xn}) of {xn} is given by:

ρ = inf {r (x, {xn}) : x ∈ X} .

The asymptotic center of a bounded sequence {xn} with respect to a subset
K of X is defined as follows:

AK ({xn}) = {x ∈ X : r (x, {xn}) ≤ r (y, {xn}) for any y ∈ K} .

If the asymptotic center is taken with respect to X , then it is simply de-
noted by A ({xn}). It is known that uniformly convex Banach spaces and even
CAT(0) spaces enjoy the property that “bounded sequences have unique as-
ymptotic centers with respect to closed convex subsets”. The following lemma
is due to Leustean [17] and ensures that this property also holds in a complete
uniformly convex hyperbolic space.

Lemma 1.1 ([17]). Let (X, d,W ) be a complete uniformly convex hyperbolic

space with monotone modulus of uniform convexity. Then every bounded se-

quence {xn} in X has a unique asymptotic center with respect to any nonempty

closed convex subset K of X.

Recall that a sequence {xn} in X is said to ∆-converge to x ∈ X if x is the
unique asymptotic center of {un} for every subsequence {un} of {xn}. In this
case, we write ∆-limn xn = x and call x as ∆-limit of {xn}.

Lemma 1.2 ([9]). Let (X, d,W ) be a uniformly convex hyperbolic space with

monotone modulus of uniform convexity η. Let x ∈ X and {an} be a sequence

in [b, c] for some b, c ∈ (0, 1). If {xn}and {yn} are sequences in X such that
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lim supn→∞ d (xn, x) ≤ r, lim supn→∞ d (yn, x) ≤ r and limn→∞ d (W (xn, yn,

αn) , x) = r for some r ≥ 0, then limn→∞ d (xn, yn) = 0.

Lemma 1.3 ([9]). Let K be a nonempty closed convex subset of a uniformly

convex hyperbolic space and {xn} a bounded sequence in K such that A ({xn}) =
{y} and r ({xn}) = ρ. If {ym} is another sequence in K such that

limm→∞ r (ym, {xn}) = ρ, then limm→∞ ym = y.

2. Main results

2.1. The case of two finite families of nonexpansive mappings

In this section, we establish ∆-convergence and strong convergence of the
algorithm (5).

The two-step algorithm (4) can be defined for two finite families of nonex-
pansive self-maps in a hyperbolic space as:

xn+1 = W (Tnxn, Snyn, αn) ,(5)

yn = W (xn, Tnxn, βn) , n ≥ 1,

where Tn = Tn(mod N) and Sn = Sn(mod N).

Lemma 2.1. Let K be a nonempty closed convex subset of a hyperbolic space

X and let {Ti : i ∈ I} and {Si : i ∈ I} be two finite families of nonexpansive

selfmaps on K such that F 6= ∅. Then for the sequence {xn} defined in (5), we
have limn→∞ d (xn, p) exists for p ∈ F.

Proof. For any p ∈ F , it follows from (5) that

d (xn+1, p) = d (W (Tnxn, Snyn, αn) , p)

≤ (1− αn) d (Tnxn, p) + αnd (Snyn, p)

≤ (1− αn) d (xn, p) + αnd (yn, p)

= (1− αn) d (xn, p) + αnd (W (xn, Tnxn, βn) , p)

≤ (1− αn) d (xn, p) + αn (1− βn) d (xn, p) + αnβnd (Tnxn, p)

≤ (1− αn) d (xn, p) + αn (1− βn) d (xn, p) + αnβnd (xn, p)

≤ d (xn, p) .

That is

(6) d (xn+1, p) ≤ d (xn, p) .

It follows from (6) that limn→∞ d (xn, p) exists for each p ∈ F . Consequently,
limn→∞ d (xn, p) exists. �

We give a key theorem for later use.

Lemma 2.2. Let K be a nonempty closed convex subset of a uniformly con-

vex hyperbolic space X with monotone modulus of uniform convexity η and let



AN ITERATION PROCESS FOR COMMON FIXED POINTS 213

{Ti : i ∈ I} and {Si : i ∈ I} be two finite families of nonexpansive selfmaps of

K such that F 6= ∅. Then for the sequence {xn} defined in (5), we have

lim
n→∞

d (xn, Tlxn) = lim
n→∞

d (xn, Slxn) = 0 for each l = 1, 2, . . . , N.

Proof. It follows from Lemma 2.1 that, limn→∞ d (xn, p) exists for each p ∈ F .
Call it c. The case c = 0 is trivial. Next, we deal with the case c > 0. Now

d (yn, p) = d (W (xn, Tnxn, βn) , p)

≤ (1− βn) d (xn, p) +n βnd (Tnxn, p)

≤ d (xn, p)

implies that

(7) lim sup
n→∞

d (yn, p) ≤ c.

Also
d (Tnxn, p) ≤ d (xn, p)

for all n = 1, 2, . . . , so

(8) lim sup
n→∞

d (Tnxn, p) ≤ c.

Next,
d (Snyn, p) ≤ d (yn, p)

gives by (7) that
lim sup
n→∞

d (Snyn, p) ≤ c.

Moreover, c = limn→∞ d (xn+1, p) = limn→∞ d (W (Tnxn, Snyn, αn) , p) gives
by Lemma 1.2,

(9) lim
n→∞

d (Tnxn, Snyn) = 0.

Now

d (xn+1, p) = d (W (Tnxn, Snyn, αn) , p)

≤ (1− αn) d (Tnxn, p) + αnd (Snyn, p)

≤ (1− αn) d (Tnxn, p) + αnd (Snyn, Tnxn) + αnd (Tnxn, p)

≤ d (Tnxn, p) + αnd (Snyn, Tnxn)

yields that
c ≤ lim inf

n→∞
d (Tnxn, p)

so that (8) gives

(10) lim
n→∞

d (Tnxn, p) = c.

In turn,

d (Tnxn, p) ≤ d (Tnxn, Snyn) + d (Snyn, p)

≤ d (Tnxn, Snyn) + d (yn, p)
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implies

(11) c ≤ lim inf
n→∞

d (yn, p) .

Thus c = limn→∞ d (yn, p) = limn→∞ d (W (xn, Tnxn, βn) , p) gives by Lemma
1.2 that

(12) lim
n→∞

d (xn, Tnxn) = 0.

Now

d (yn, xn) = d (W (xn, Tnxn, βn) , xn)

≤ βnd (Tnxn, xn)

implies by (12) that

(13) lim
n→∞

d (yn, xn) = 0.

Using (9), (12) and (13), we have

d (xn, Snxn) ≤ d (xn, Tnxn) + d (Tnxn, Snyn) + d (Snyn, Snxn)

≤ d (xn, Tnxn) + d (Tnxn, Snyn) + d (yn, xn)

and so

(14) lim
n→∞

d (xn, Snxn) = 0.

Next,

d (xn+1, xn) = d (W (Tnxn, Snyn, αn) , xn)

≤ αnd (Tnxn, xn) + (1− αn) d (Snyn, xn)

≤ αnd (Tnxn, xn) + (1− αn) (d (Snyn, Tnxn) + d (Tnxn, xn))

gives by (9) and (12) that

lim
n→∞

d (xn+1, xn) = 0.

This implies that

lim
n→∞

d (xn+l, xn) = 0 for each l ∈ I.

Further, observe that

d (xn, Tn+lxn) ≤ d (xn, xn+l) + d (xn+l, Tn+lxn+l) + d (Tn+lxn+l, Tn+lxn)

≤ d (xn, xn+l) + d (xn+l, Tn+lxn+l) + d (xn+l, xn)

≤ 2d (xn, xn+l) + d (xn+l, Tn+lxn+l) .

Taking lim on both sides of the above inequality, we have

lim
n→∞

d (xn, Tn+lxn) = 0 for each l ∈ I.
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Since for each l∈I, the sequence {d (xn, Tlxn)} is a subsequence of
⋃

N

i=1 {d (xn,

Tn+lxn)} and limn→∞ d (xn, Tn+lxn) = 0 for each l ∈ I, therefore

lim
n→∞

d (xn, Tlxn) = 0 for each l ∈ I.

Similarly, we have

lim
n→∞

d (xn, Sn+lxn) = 0 for each l ∈ I,

and hence
lim
n→∞

d (xn, Slxn) = 0 for each l ∈ I. �

Theorem 2.3. Let K be a nonempty closed convex subset of a complete uni-

formly convex hyperbolic space X with monotone modulus of uniform convexity

η and let {Ti : i ∈ I} and {Si : i ∈ I} be two finite families of nonexpansive

selfmaps on K such that F 6= ∅. Then the sequence {xn} defined in (5), ∆-

converges to a common fixed point of {Ti : i ∈ I} and {Si : i ∈ I}.

Proof. It follows from Lemma 2.1 that {xn} is bounded. Therefore by Lemma
1.1, {xn} has a unique asymptotic center, that is, A ({xn}) = {x}. Assume
that {un} is any subsequence of {xn} such that A ({un}) = {u} . Then by
Lemma 2.2, we have limn→∞ d (un, Tlun) = limn→∞ d (un, Slun) = 0 for each
l = 1, 2, . . . , N. We claim that u is the common fixed point of {Ti : i ∈ I} and
{Si : i ∈ I} .

Now, we define a sequence {vm} in K by vm = Tmu where Tm = Tm(mod N).
On the other hand,

d (vm, un) ≤ d (Tmu, Tmun) + d (Tmun, Tm−1un) + · · ·+ d (Tun, un)

≤ d (u, un) +

m−1
∑

i=1

d (un, Tiun) .

Therefore, we have

r (vm, {un}) = lim sup
n→∞

d (vm, un) ≤ lim sup
n→∞

d (u, un) = r (u, {un}) .

This implies that |r (vm, {un})− r (u, {un})| → 0 as m → ∞. By Lemma
1.3, we get Tm(modN)u = u. Thus u is the common fixed point of {Ti : i ∈ I} .
By the same argument, we can show that u is the common fixed point of
{Si : i∈I}. Therefore u is the common fixed point of {Ti : i∈I} and {Si : i∈I}.
Moreover, limn→∞ d (xn, u) exists by Lemma 2.1.

Assume x 6= u.By the uniqueness of asymptotic centers,

lim sup
n→∞

d (un, u) < lim sup
n→∞

d (un, x)

≤ lim sup
n→∞

d (xn, x)

< lim sup
n→∞

d (xn, u)

= lim sup
n→∞

d (un, u) ,
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a contradiction. Thus x = u. Since {un} is an arbitrary subsequence of {xn},
therefore A ({un}) = {u} for all subsequences {un} of {xn}. This proves that
{xn} ∆-converges to a common fixed point of {Ti : i ∈ I} and {Si : i ∈ I}. �

We have the following corollaries.

Corollary 2.4. Let X,K and {Ti : i ∈ I} be taken as above theorem and {xn}
be defined as

xn+1 = W (Tnxn, Tnyn, αn) ,(15)

yn = W (xn, Tnxn, βn) , n ≥ 1

∆-converges to a common fixed point of {Ti : i ∈ I} .

Corollary 2.5. Let X and K be taken as above theorem and S and T be two

nonexpansive mappings. Let {xn} be defined as

xn+1 = W (Txn, Syn, αn) ,(16)

yn = W (xn, T xn, βn) , n ≥ 1

∆-converges to a common fixed point of {Ti : i ∈ I} .

Recall that a sequence {xn} in a metric space X is said to be Fejér monotone
with respect to K (a subset of X) if d (xn+1, p) ≤ d (xn, p) for all p ∈ K and
for all n ≥ 1. A map T : K → K is semi-compact if any bounded sequence
{xn} satisfying d (xn, T xn) → 0 as n → ∞, has a convergent subsequence.

Two mappings T, S : K → K are said to satisfy condition (A′) [12] if there
is a nondecreasing function f : [0,∞) → [0,∞) with f (0) = 0, f (t) > 0 for all
t ∈ (0,∞) such that

1

2
(d (x, Tx) + d (x, Sx)) ≥ f (d (x, F ))

for all x ∈ K, where d (x, F ) = inf {d (x, p) : p ∈ F := F (T ) ∩ F (S)}.
We can modify this definition for two finite families of mappings as follows.

Let {Ti : i ∈ I} and {Si : i ∈ I} be two finite families of nonexpansive selfmaps
on K with F 6= ∅. Then the two families are said to satisfy condition (B) on
K if

max
1≤l≤N

{

1

2
(d (x, Tlx) + d (x, Slx))

}

≥ f (d (x, F )) for all x ∈ K.

For further development, we need the following technical result.

Lemma 2.6 ([2]). Let K be a nonempty closed subset of a complete metric

space (X, d) and {xn} be Fejér monotone with respect to K. Then {xn} con-

verges to some p ∈ K if and only if limn→∞ d (xn,K) = 0.

Now we prove our strong convergence theorems as follows:
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Theorem 2.7. Let K be a nonempty closed convex subset of a complete uni-

formly convex hyperbolic space X with monotone modulus of uniform convexity

η and let {Ti : i ∈ I} and {Si : i ∈ I} be two finite families of nonexpansive

selfmaps on K such that F 6= ∅. Suppose that {Ti : i ∈ I} and {Si : i ∈ I} sat-

isfy condition (B). Then the sequence {xn} defined in (5) converges strongly

to p ∈ F.

Proof. By Lemma 2.1, limn→∞ d (xn, F ) exists for all p ∈ F . Also, by Lemma
2.2, limn→∞ d (xn, Tlxn) = limn→∞ d (xn, Slxn) = 0 for each l ∈ I. It follows
from condition (B) that limn→∞ f (d (xn, F )) = 0. Since f is nondecreasing
with f (0) = 0, it follows that limn→∞ d (xn, F ) = 0. By (6), the sequence
{xn} is Fejér monotone with respect to F. Therefore, Lemma 2.6 implies that
{xn} converges strongly to a point p in F . �

Note that the Condition (B) is weaker than both the compactness of K and
the semicompactness of the nonexpansive mappings {Ti : i∈I} and {Si : i∈I},
(see Senter and Dotson [21]) therefore we already have the following result.

Theorem 2.8. Let K be a nonempty closed convex subset of a complete uni-

formly convex hyperbolic space X with monotone modulus of uniform convexity

η and let {Ti : i ∈ I} and {Si : i ∈ I} be two finite families of nonexpansive

selfmaps on K such that F 6= ∅. Suppose that either K is compact or one of the

map in {Ti : i ∈ I} and {Si : i ∈ I} is semi-compact. Then the sequence {xn}
defined in (5) converges strongly to p ∈ F .

2.2. The case of three finite families of nonexpansive mappings

We can generalize (5) to the case of three finite families of nonexpansive
mappings as follows.

xn+1 = W (Tnxn, Snyn, αn) ,

yn = W (xn, Qnxn, βn) , n ≥ 1,

where {αn} and {βn} are in (0, 1) .This iteration is reduced to (5) (and hence
(3), (4), (15), (16)). Moreover, it is reduced to the Ishikawa iteration process.

We can prove all the theorems of this paper with this process using an extra
condition as : d (xn, Sixn) ≤ d (Tixn, Sixn). The mapping Q have an important
role because we have to have limn→∞ d (xn, Qixn) to reach d (Tixn, Sixn) = 0,
and, in turn, limn→∞ d (xn, Tixn) = limn→∞ d (xn, Sixn) = 0. Above condition
is satisfied by the nonexpansive mappings S, T : R → R defined as Sx = 2x+1

4 ,
Tx = 1− x for all x ∈ R.

Remark 2.9. Our results generalize the corresponding results Khan and Abbas
[10] in two ways: (i) from one nonexpansive mapping to two finite families of
nonexpansive mappings. (ii) from CAT(0) spaces to general setup of hyperbolic
spaces.

Remark 2.10. Since our iteration process is faster than Mann iteration process,
our result better than correspond results of Gunduz and Akbulut [8].
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Remark 2.11. Theorems of this paper can also be proved with error terms using
following proces:

xn+1 = W

(

Tnxn,W

(

Snyn, un,
βn

1− αn

)

, αn

)

,

yn = W

(

xn,W

(

Tnxn, vn
β̂n

1− α̂n

)

α̂n

)

, n ≥ 1,

where {un} and {vn} are two bounded sequences in X and {αn} , {βn} , {α̂n} ,

{β̂n} are four sequences in [0, 1] such that αn + βn = 1 = α̂n + β̂n for n ∈ N.
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