References
- R.P. Agarwal, D. O'Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8(1) (2007), 61-79.
- F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14(3) (2004), 773-782. https://doi.org/10.1137/S1052623403427859
- H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367-426. https://doi.org/10.1137/S0036144593251710
- H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, Berlin, 2011.
- V. Berinde, Iterative approximation of fixed points, Editura Dfemeride, Baia Mare, 2002.
- C.L. Byrne, A unified treatment of some iterative algorithm in signal processing and image reconstruction, Inverse Problems, 18 (2004), 441-453. https://doi.org/10.1088/0266-5611/18/2/310
- C.E. Chidume and S. Mutangadura, An example on the Mann iteration method for Lipschitzian pseudocontractions, Proc. Amer. Math. Soc., 129 (2001), 2359-2363. https://doi.org/10.1090/S0002-9939-01-06009-9
- S. Dashputre, Padmavati and K. Sakure, On approximation of fixed point in Busemann space via generalized Picard normal S-iteration process, Malaya J. Math., 8(3) (2020), 1055-1062. https://doi.org/10.26637/MJM0803/0056
- S. Dashputre, Padmavati and K. Sakure, Strong and ∆-convergence results for generalized nonexpansive mapping in hyperbolic space, Commu. Math. Appl., 11(3) (2020), 389-401.
- S. Dashputre, Padmavati and K. Sakure, Convergence results for proximal point algorithm in complete CAT(0) space for multivalued mappings, J. Indone. Math. Soc., 27(1) (2021), 29-47.
- Q.L. Dong and Y.Y. Lu, A new hybrid algorithm for nonexpansive mapping, Fixed Point Theory Appl., 2015, 2015:37.
- Q.L. Dong, H.B. Yuan, Y.J. Cho and T.M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., 12(1) (2018), 87-102. https://doi.org/10.1007/s11590-016-1102-9
- W.G. Jr. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc., 149 (1970), 65-73. https://doi.org/10.1090/S0002-9947-1970-0257828-6
- O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl., 8 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08
- J. Franklin, Methods of mathematical economics, Springer Verlag, New York, 1980.
- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
- N. Kadioglu and I. Yildirim, Approximating fixed points of nonexpansive mappings by faster iteration proess, J. Adv. Math. Stud., 8(2) (2015), 257-264.
- S.H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 1 (2013), 1-10.
- J.L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-519. https://doi.org/10.1002/cpa.3160200302
- W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-610. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- P.E. Mainge, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236. https://doi.org/10.1016/j.cam.2007.07.021
- B. Mercier, Mechanics and Variational Inequalities, Lecture Notes, Orsay Centre of Paris University, 1980.
- K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372-379. https://doi.org/10.1016/S0022-247X(02)00458-4
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
- A. Phon-on and N. Makaje, A. Sama-Ae and K. Khongraphan, An inertial S-iteration process, Fixed Point Theory Appl., 2019, 2019:4.
- D.R. Sahu, Application of the S-iteration process to constrained minimization problems and feasibility problems, Fixed Point Theory, 12 (2011), 187-204.
- R. Suparatulotorn, W. Cholamjiak and S. Suantai, Modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs, Numer. Algo., 77(2) (2018), 479-490. https://doi.org/10.1007/s11075-017-0324-y
- W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341(1) (2008), 276-286. https://doi.org/10.1016/j.jmaa.2007.09.062
- L.U. Uko, Remarks on the generalized Newton method, Math. Program., 59 (1993), 404-412.
- L.U. Uko, Generalized equations and the generalized Newton method, Math. Program., 73 (1996), 251-268. https://doi.org/10.1007/BF02592214