DOI QR코드

DOI QR Code

INERTIAL PICARD NORMAL S-ITERATION PROCESS

  • Received : 2020.09.06
  • Accepted : 2021.04.11
  • Published : 2021.12.15

Abstract

Many iterative algorithms like that Picard, Mann, Ishikawa and S-iteration are very useful to elucidate the fixed point problems of a nonlinear operators in various topological spaces. The recent trend for elucidate the fixed point via inertial iterative algorithm, in which next iterative depends on more than one previous terms. The purpose of the paper is to establish convergence theorems of new inertial Picard normal S-iteration algorithm for nonexpansive mapping in Hilbert spaces. The comparison of convergence of InerNSP and InerPNSP is done with InerSP (introduced by Phon-on et al. [25]) and MSP (introduced by Suparatulatorn et al. [27]) via numerical example.

Keywords

References

  1. R.P. Agarwal, D. O'Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8(1) (2007), 61-79.
  2. F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14(3) (2004), 773-782. https://doi.org/10.1137/S1052623403427859
  3. H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367-426. https://doi.org/10.1137/S0036144593251710
  4. H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, Berlin, 2011.
  5. V. Berinde, Iterative approximation of fixed points, Editura Dfemeride, Baia Mare, 2002.
  6. C.L. Byrne, A unified treatment of some iterative algorithm in signal processing and image reconstruction, Inverse Problems, 18 (2004), 441-453. https://doi.org/10.1088/0266-5611/18/2/310
  7. C.E. Chidume and S. Mutangadura, An example on the Mann iteration method for Lipschitzian pseudocontractions, Proc. Amer. Math. Soc., 129 (2001), 2359-2363. https://doi.org/10.1090/S0002-9939-01-06009-9
  8. S. Dashputre, Padmavati and K. Sakure, On approximation of fixed point in Busemann space via generalized Picard normal S-iteration process, Malaya J. Math., 8(3) (2020), 1055-1062. https://doi.org/10.26637/MJM0803/0056
  9. S. Dashputre, Padmavati and K. Sakure, Strong and ∆-convergence results for generalized nonexpansive mapping in hyperbolic space, Commu. Math. Appl., 11(3) (2020), 389-401.
  10. S. Dashputre, Padmavati and K. Sakure, Convergence results for proximal point algorithm in complete CAT(0) space for multivalued mappings, J. Indone. Math. Soc., 27(1) (2021), 29-47.
  11. Q.L. Dong and Y.Y. Lu, A new hybrid algorithm for nonexpansive mapping, Fixed Point Theory Appl., 2015, 2015:37.
  12. Q.L. Dong, H.B. Yuan, Y.J. Cho and T.M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., 12(1) (2018), 87-102. https://doi.org/10.1007/s11590-016-1102-9
  13. W.G. Jr. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc., 149 (1970), 65-73. https://doi.org/10.1090/S0002-9947-1970-0257828-6
  14. O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl., 8 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08
  15. J. Franklin, Methods of mathematical economics, Springer Verlag, New York, 1980.
  16. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
  17. N. Kadioglu and I. Yildirim, Approximating fixed points of nonexpansive mappings by faster iteration proess, J. Adv. Math. Stud., 8(2) (2015), 257-264.
  18. S.H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 1 (2013), 1-10.
  19. J.L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-519. https://doi.org/10.1002/cpa.3160200302
  20. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-610. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  21. P.E. Mainge, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236. https://doi.org/10.1016/j.cam.2007.07.021
  22. B. Mercier, Mechanics and Variational Inequalities, Lecture Notes, Orsay Centre of Paris University, 1980.
  23. K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372-379. https://doi.org/10.1016/S0022-247X(02)00458-4
  24. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  25. A. Phon-on and N. Makaje, A. Sama-Ae and K. Khongraphan, An inertial S-iteration process, Fixed Point Theory Appl., 2019, 2019:4.
  26. D.R. Sahu, Application of the S-iteration process to constrained minimization problems and feasibility problems, Fixed Point Theory, 12 (2011), 187-204.
  27. R. Suparatulotorn, W. Cholamjiak and S. Suantai, Modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs, Numer. Algo., 77(2) (2018), 479-490. https://doi.org/10.1007/s11075-017-0324-y
  28. W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341(1) (2008), 276-286. https://doi.org/10.1016/j.jmaa.2007.09.062
  29. L.U. Uko, Remarks on the generalized Newton method, Math. Program., 59 (1993), 404-412.
  30. L.U. Uko, Generalized equations and the generalized Newton method, Math. Program., 73 (1996), 251-268. https://doi.org/10.1007/BF02592214