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WEAK AND STRONG CONVERGENCE FOR
QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

GANG EuN Kim

ABSTRACT. In this paper, we first show that the iteration {x, } defined by
Zn+1 = P((1 — an)zn + anTP[BnTxn + (1 — Bn)zn]) converges strongly
to some fixed point of 7" when E is a real uniformly convex Banach space
and T is a quasi-nonexpansive non-self mapping satisfying Condition A,
which generalizes the result due to Shahzad [11]. Next, we show the
strong convergence of the Mann iteration process with errors when E
is a real uniformly convex Banach space and T is a quasi-nonexpansive
self-mapping satisfying Condition A, which generalizes the result due to
Senter-Dotson [10]. Finally, we show that the iteration {z,} defined by
Tnt1 = anSxn+BnT ), STn + Bl TTn +7v)vn]+Ynun converges strongly
to a common fixed point of 7" and S when F is a real uniformly convex
Banach space and T, S are two quasi-nonexpansive self-mappings satis-
fying Condition D, which generalizes the result due to Ghosh-Debnath

3]

1. Introduction

Let E be a real uniformly convex Banach space and let C' be a nonempty
closed convex subset of E. Then a mapping T from C into F is called nonez-
pansive if ||Tx —Ty|| < ||z —y| for all z,y € C. A mapping T from C' into E is
also called quasi-nonexpansive if the set F(T') of fixed points of T is nonempty
and ||Tx — y|| < ||z —y|| for all z € C and y € F(T). For a mapping T of C
into itself, we consider the following iteration scheme: x, € C,

(1) Tpr1 = (1 — an)Tn + @ T[BnTxn + (1 — Br)xy]

for all n > 1, where {a,} and {3,} are real sequences in [0,1]. Such an
iteration scheme was introduced by Ishikawa [5]; see also Mann [7]. Let C be a
nonexpansive retract of E. For a mapping T from C' into E, we also consider
the following iteration scheme (Shahzad [11]): z; € C,

(2) Tp41 = P((l - an)xn + O‘nTP[BnT-Tn + (1 - Bn)xn])
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for all n > 1, where {a,} and {8,} are real sequences in [0,1] and P is a
nonexpansive retraction of F onto C. If T is a self-mapping, then (2) reduces
to an iteration scheme (1). For two mappings S,T of C into itself, we also
consider a more general iterative scheme of the type (cf., Ghosh-Debnath [3],
Xu [13]) emphasizing the randomness of errors as follows:

xr1 € C,
(3) Tn+1 = OénS$n + BnTyn + YnlUn,
Yn = a;LS-Tn + ﬂ;LTxn + ’V;LUTL,

where {an}, {Bn}, {m}, {on}, {8}, {75} are real sequences in [0,1] and {u,},
{vn} are two bounded sequences in C' such that

(1) an+Bn+ym=a,+8,+7,=1foraln>1,
(i) >0 <ooand > o v, < oo

If S = I, the identity mapping and v, =7/, = 0 for all n > 1, then (3) reduces
to an iteration scheme (1), while setting S =1, 3, =0and v, =0 foralln > 1
reduces to the Mann iteration process with errors which is a generalized case
of the Mann iteration process. Recently, Shahzad [11] proved that if E is a real
uniformly convex Banach space, and C' is a nonempty closed convex subset of
FE which is also a nonexpansive retract of E/, and T : C — E is a nonexpansive
mapping with F(T') # (), and T satisfies Condition A, then for any z; in C, the
sequence {z,} defined by (2) converges strongly to some fixed point of 7' under
the assumption that {c,} and {3,} are such that 0 < a < a,,,8, < b < 1
for all n > 1 and some a,b € (0,1). On the other hand, Senter-Dotson [10]
proved that if F is a real uniformly convex Banach space, and C' is a nonempty
closed convex subset of E, and T : C' — C is a quasi-nonexpansive mapping
satisfying Condition A, then for any x; € C, the sequence {x,} defined by
Znt1 = (1 — ap)zy, + o Ty, converges strongly to some fixed point of 7' under
the assumption that {a,} in [0, 1] is chosen so that a;, € [a,b] for all n > 1
and some a,b € (0,1). Ghosh-Debnath [3] proved that if E is a real uniformly
convex Banach space and C is a nonempty closed convex subset of E and
T,S : C — C are two quasi-nonexpansive mappings, and 7T, S satisfy Condition
C with F(T) N F(S) # 0, then for any x; in C, the sequence {x,} defined by
Tnt1 = (1 — apn)Szy, + o, T[(1 — B,)Sxy + BrTx,] converges strongly to a
common fixed point of 7' and S under the assumption that {a,} and {8,}
are such that 0 < a <, <b<1,0< 3, <b<1foralln>1and some
a,b € (0,1), which generalized the result due to M. Maiti and M. K. Ghosh [6].

In this paper, we first prove that the iteration {x,} defined by (2) con-
verges strongly to some fixed point of 7" when FE is a real uniformly convex
Banach space and T is a quasi-nonexpansive non-self mapping satisfying Con-
dition A, which generalizes the result due to Shahzad [11]. Next, we prove the
strong convergence of the Mann iteration process with errors when FE is a real
uniformly convex Banach space and T is a quasi-nonexpansive self-mapping
satisfying Condition A, which generalizes the result due to Senter-Dotson [10].
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Finally, we prove that the iteration {x,} defined by (3) converges strongly to
a common fixed point of T" and S when FE is a real uniformly convex Banach
space and T, S are two quasi-nonexpansive self-mappings satisfying Condition
D, which generalizes the result due to Ghosh-Debnath [3].

2. Preliminaries

Throughout this paper, we denote by E a real Banach space. Let C be a
nonempty closed convex subset of F and let T be a mapping from C into E.
Then we denote by F(T') the set of all fixed points of T, i.e., F(T) = {z €
C :Tx = x}. A subset C of E is said to be a retract of E if there exists a
continuous mapping P : £ — C such that Px = z for all x € C. A mapping
P : E — E is said to be a retraction if P2 = P. A Banach space E is said to
be uniformly convez if the modulus of convexity ég = dg(e), 0 < e < 2, of E
defined by

. x +
se(0 =it {1- M oy € B el < Ll < 10— ol 2 o]

satisfies the inequality dg(e) > 0 for every € € (0,2]. When {z,} is a sequence
in E, then z, — z (z, — z) will denote strong (weak) convergence of the
sequence {z,} to . A mapping T : C — F is said to be demiclosed with
respect to y € E [1] if for any sequence {z,} in C, it follows from z, — =
and Tz, — y that x € C and T'(z) = y. If I — T is demiclosed at zero, i.e.,
for any sequence {z,} in C, the conditions z,, — = and =, — Tz, — 0 imply
2 —Tx = 0. A Banach space E is said to satisfy Opial’s condition [8] if for any
sequence {z,} in F, z, — x implies that

lim sup 1 — o] < limsup [z, — y

n—oo n—oo
for all y € E with y # . All Hilbert spaces and [?(1 < p < oo) satisfy Opial’s
condition, while LP with 1 < p # 2 < oo do not.

Condition 1 ([10]). A mapping T : C — E with F(T) # 0 is said to satisfy
Condition A if there exists a nondecreasing function f : [0,00) — [0, 00) with
f(0) =0 and f(r) > 0 for all r € (0,00) such that

le = Tz|| > f(d(z, F(T)))
for all x € C, where d(z, F(T)) = inf cp(7) [|2 — 2]|.

Condition 2 ([6]). A mapping T : C — C with F(T) # 0 is said to satisfy
Condition B if there exists a nondecreasing function f : [0,00) — [0, 00) with
f(0) =0and f(r) > 0 for all r € (0, 00) such that

o =Tyl = f(d(z, F(T)))

for all z € C with y = (1 — t)z + tTx, where 0 <t < § < 1 and d(z, F(T)) =
inf.er(m) |z — 2.
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Condition 3 ([3]). Two mappings T, S : C — C are said to satisfy Condition
C if there exists a nondecreasing function f : [0,00) — [0,00) with f(0) = 0
and f(r) > 0 for all € (0,00) such that

Sz — Tyl = f(d(z, F))
for all z,y € C with y = (1 — t)Sz + tTx, where 0 < ¢t < 8 < 1, F =
F(T)NF(S) # 0 and d(z,F) = infeF ||z — 2]|.

Condition 4. Two mappings T,S : C — C are said to satisfy Condition D
if there exists a nondecreasing function f : [0,00) — [0, 00) with f(0) = 0 and
f(r) > 0 for all € (0, 00) such that

Sz — Tyl = f(d(z,F))

for all x,y € C with y = aSz + BTz + v for all v € C, where 0 < a < a < 1,
0<By<b<lwitha+B8+y=1F=FT)F(S) # 0 and d(z,F) =
inf,ecp ||z — 2]

If we set v = 0, then Condition D becomes identical with Condition C,
while setting S = I and v = 0 becomes identical with Condition B.

3. Weak and strong convergence theorems
We first begin with the following lemma.

Lemma 1 ([9]). Let E be a uniformly convex Banach space, 0 < b < ¢, <
¢ <1 forallmn > 1 and some b,c € (0,1) and some a > 0. Suppose that
{zn 352, and {yn}22, are sequences of E such that limsup,,_, . ||z.]| < a,

limsup,,_, llynll < @, and limy, o0 |[tnxn + (1 — tn)ynl| = a. Then
lim ||, — yn| = 0.
n—r oo

Lemma 2 ([4]). Let E be a uniformly convexr Banach space. Let x,y € E. If
|z <1, lyl <1, and |z —y|| > € >0, then | Az+(1—A)y|| < 1—2X(1—\)é(e)
for X with 0 < X < 1.

Lemma 3 ([12]). Let {a,} and {b,} be sequences of nonnegative real numbers
such that >>7 b, < 0o and

n=1
Ap+1 S (07 + bn

for allm > 1. Then lim, .. a, exists.

Our Theorem 1 carries over Theorem 3.3 of Shahzad [11] to a quasi-non-
expansive mapping.

Theorem 1. Let E be a uniformly convexr Banach space, and let C be a
nonempty closed conver subset of E which is also a nonexpansive retract of
E, and let T : C — E be a quasi-nonexpansive mapping. Suppose that for any
x1 in C, the sequence {x,} is defined by (2), where {a,} and {B,} are chosen
so that 0 < a < ap,Bn < b <1 for alln > 1 and some a,b € (0,1). Then
limy, o0 |[T2n — zn|| = 0.
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Proof. For any z € F(T), since
ns1 — 2l = [P((1 = an)tn + T Pl5aTan + (1 = fn)n]) — P2

<A = an)zn + anTP[BnTxyn + (1 — Br)zn] — 2||
< (A —an)llzn — 2| + anl|[TP[BnTzn + (1 — Bn)zn] — 2|

(1 = an)llzn = 2l + an | P[BnTn + (1 = Bn)zn] — Pz

(1= an)llen = 2l + an|| BnTzn + (1 = Bp)an — 2|

(I —an)llzn = 2l + an[BullTzn — 2] + (1 = Bn)l|lzn — 2]]

(1 —an)llzn = 2l + an[Bnllen — 2] + (1 = Bn)llzn — 2|]

(

1= om)||zn — 2l + am||zn — 2||

IANIA IAN IACIA

[ — 2],

and thus the sequence {||,, — z||} is nonincreasing and bounded below. Hence
we see that

(5) i, — 2| (= o)

exists. If ¢ = 0, then the conclusion is obvious. So, we assume ¢ > 0. Put
Yn = PBnTxn + (1 — Bn)xy] for all n > 1. Then
[yn — 2|l = I1P[BnTxs + (1 — Bn)xs] — Pz||
<||BnTxn + (1 = Bn)ryn — 2|

(6) < BalTan — z[ + (1 = Bo)llzn — 2|l
< Bulln — 2l + (1= Bu)llzn — 2|
= [len — 2|

So, we have

(7) limsup ||y, — z|| < c.

n—o0
By using (6), we obtain
1Ty = 2| < llyn — 2|| < [lzn — 2].
By using Lemma 2, we have
[2nt1 =zl = [IP((1 = an)an + anTyn) — Pz||
< |1 = an)zn + anTyn — 2||

= [lan(Tyn — 2) + (1 — an)(@n — 2)||
|Tyn — x4
< - - - T .
< (Mo = 21 [1 = 20n(1 = @i (S =) |
Hence we obtain
Tyn — Tn
20 (1 = ) (| - ,z||)5E(u

) <l = 2ll = ll2ns1 = 2.
fon — 21
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Since

2a(1 — b) i(”xn - z||)5E<W) < 0,
n=1 n

and dg is strictly increasing and continuous, we obtain
®) i [Ty, — 2, = 0.
Since
l2n = 2|l < llzn = Tynll + | Tyn — 2|
< len = Tynll + llyn — =1,
and by (8), we obtain

e
(9) ¢ < liminf [y, — 2]

By using (7) and (9), we obtain

e= lim [lgn— 7
n—oo
nh_}II;o |P[BnTxy, + (1 — Bn)xn] — Pz||
lim ||BnT2n + (1 — Bn)zn — 2||
n—oo
nlLH;o 180 (Txn — 2) + (1 = Bn)(2n — 2)||
Tim {817, — 2] + (1= B2 — =]}
Tim (Bl — 2+ (1 = B o — =)

lim ||, — z]| = ¢
n—oo

IN I I IA

By using limsup,,_,  [|T@, — 2| < ¢ and Lemma 1, we obtain lim, o || Tz, —
Zn|| = 0. O

Theorem 2. Let E be a uniformly convexr Banach space satisfying Opial’s
condition, and let C' be a nonempty closed convexr subset of E which is also a
nonexpansive retract of E, and let T : C — E be a quasi-nonexpansive mapping
with I —T demiclosed at zero. Suppose that for any x1 in C, the sequence {x,}
is defined by (2), where {a,} and {B,} are chosen so that 0 < a < ap, B, <
b<1 foralln>1 and some a,b € (0,1). Then {x,} converges weakly to some
fixed point of T.

Proof. For any z € F(T), by (5) in the proof of Theorem 1, {z,} is bounded.
Let z; and 29 be two weak subsequential limits of the sequence {z,}. Then
we claim that the conditions x,, — 21 and x,, — 2z imply 21 = 20 € F(T).
In fact, since I — T demiclosed at zero and by using Theorem 1, we have
21,22 € F(T). Next, we show z; = z2. If not, by Opial’s condition and (5) in
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the proof of Theorem 1,

lim ||z, — 2| = lim |z,, — 2|
n— 00 p—00

< Jim [z, — 2
= lim ||z, — 22|
n—roo

and by using similar method, we have

lim ||z, — 22| < lim ||z, — 2]
n—oo n—roo

This is a contradiction. Hence we have z; = z3. Therefore {x,} converges
weakly to some fixed point of T O

Our Theorem 3 carries over Theorem 3.6 of Shahzad [11] to a quasi-non-
expansive mapping.
Theorem 3. Let E be a uniformly convexr Banach space, and let C be a
nonempty closed conver subset of E which is also a nonexpansive retract of
E, and let T : C — E be a quasi-nonexpansive mapping, and T satisfies Con-
dition A. Suppose that for any x1 in C, the sequence {x,} is defined by (2),
where {ay,} and {B,} are chosen so that 0 < a < a,, B, <b <1 foralln>1
and some a,b € (0,1). Then {x,} converges strongly to some fixed point of T

Proof. By using Condition A, we obtain
fld(zn, F(T))) < [Tz — 24|
for all n > 1. By using (4) in the proof of Theorem 1, we obtain

inf —2||< inf — 2.
o llengr =2l < dnf e = 2]

Thus limy, o0 d(2n, F(T))(= k) exists. We first claim that lim,,_, oo d(x,, F(T))
= 0. In fact, assume that k = lim,,_,o d(x,, F(T)) > 0. Then we can choose
ng € N such that 0 < % < d(xpn, F(T)) for all n > ng. By using Condition A
and Theorem 1, we obtain

0 < f(§) < fld(wn, F(T))) < T2y — 2] = 0

as n — oo. This is a contradiction. So, we obtain k = 0. Next, we claim that
{zn} is a Cauchy sequence. Let € > 0 be given. Since lim,,_,o d(xy, F(T)) =0,
there exists ng € IV such that for all n > ng, we obtain

€
(10) d(zn, F(T)) < 92"
Let n,m > ng and p € F(T). Then, from (4) in the proof of Theorem 1, we

obtain
|2n = Zmll < |27 —pl| + |2m — |l

< 2[|#n, — pll-
Taking the infimum over all p € F(T') on both sides and by (10), we obtain
[0 = @ml| < 2[d(2n,, F(T))] < €
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for all n,m > ng. This implies that {x,} is a Cauchy sequence. Let lim,, ;oo 2y,
= ¢. Then d(q, F(T')) = 0. Since F(T) is closed, we obtain ¢ € F(T'). Hence
{z,} converges strongly to some fixed point of T. O

Theorem 4. Let E be a uniformly convexr Banach space, and let C be a
nonempty closed conver subset of E which is also a nonexpansive retract of
E, and let T : C — E be a continuous quasi-nonexpansive mapping, and let
T(C) be contained in a compact subset of E. Suppose that for any x1 in C,
the sequence {x,} is defined by (2), where {ayn} and {5,} are chosen so that
0<a<apfB,<b<lforan>1and some a,b € (0,1). Then {z,}
converges strongly to some fixed point of T.

Proof. Since {x,} is well-defined and the closure of T'(C) is compact, there
exists a subsequence {Tz,,} of the sequence {Tz,} such that {Tz,,} — z.
By Theorem 1, we can choose a subsequence {z,,} of {x,} such that {x,,}
converges strongly to z. Thus, by using Theorem 1 and the continuity of
T, we obtain z € F(T). From (5) in the proof of Theorem 1, we obtain
lim,, o0 ||zn — 2]| = 0. O

Theorem 5. Let E be a uniformly conver Banach space, and let C be a
nonempty closed convex subset of E, and let T : C — C' be a quasi-nonexrpansive
mapping. Suppose that for any x1 in C, the sequence {x,} is defined by

Tntl = QnTp + BnTTp + Yrntn,

where {a,}, {Bn} and {v,} in [0,1] with 3,2, Bn(1 — By) = oo, and {u,} is
a bounded sequence in C such that (1) an + Bn + 0 = 1 for all n > 1, (ii)
>0 Y < o00. Then liminf, o || T2, — z,| = 0.

Proof. For a fixed z € F(T), since {u,} is bounded in C, let
M :=sup |Ju, — z|| < cc.
n>1
From
[#n41 — 2] = llan@n + BuTzn + Yntn — 2|
< apllzn = 2| + BulTzn — 2]l + Yallun — 2||
< aplzn — 2| + Bullzn — 2| + ullun — 2|
=1 = w)llzn — 2|l + llun — 2|
<lan — 2] + M
and Lemma 3, we readily see that
(1) Tim [l — 2]|(= 0
exists. If ¢ = 0, then the conclusion is obvious. So, we assume ¢ > 0. Since
[T2n — 2 + Y(tn — 20)|| < [[T20 — 2]l + Yalltn — 22|
< lwn = 2l + M,
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where M’ = sup,,>1 [|un — Zn|| < 0o and
[2n = 2 + Y (un — 2)|| < l|2n — 2| + 1 M,
and by Lemma 2, we have
[2ni1 — 2|
= ||lanzy + BnTZn + Yntn — 2|
= |lan(zn — 2) + Bn(Txn — 2) + Yn(un — 2)|
= 18n(Txn — 2) + an(@n — 2) + Yn(un — Tp + T — 2)
+ B Yn(Un — Tn) = Bnyn(tn — 24)||
= Bn(Tan — 2) + (1 = Bu)(@n — 2) + Ynltn — Tn)
+ B vn(Un — Tn) = By (un — x0)||
= [|Bn(Tzn — 2) + Bnyn(un — x5) + (1 = Bp)(zn — 2)
+ (1 = Bn)vn(un — )|l
= [1Bn(Twn — 2+ Y (tn — 2n)) + (1 = Bn)(@n — 2 + Yn(un — zn))||

< (||a;n — |+ %M’> {1 —28,(1— ﬂn)dE(llw,UT_m;ff;JJw'ﬂ'

Hence we obtain
280(1 = Ba) (llem = 2 + 7 M) 8

< ln = 21l = llznr = 2l + 9 M.

|Txn — x| )
|7 — 2]l + M’

Since
S [Tzn — 2l
2Y B,(1-38 (x—z —|—7M’)5E( 7 )<oo7
2= o) e =l iz = 2l +7n b
and dg is strictly increasing and continuous, we obtain
hnn_li,%f T2, — zn] = 0. 0

Theorem 6. Let E be a uniformly convex Banach space. Let C' be a nonempty
closed convex subset of E and let T : C' — C be a quasi-nonerpansive mapping
satisfying Condition A. Suppose that for any xy in C, the sequence {x,} is
defined by
Tptl = QpTp + BT Xy + Y ln,

where {a}, {Bn} and {v,} in [0,1] with Y7 | Bn(1 — Bn) = o0, and {u,} is
a bounded sequence in C such that (1) o, + Bn + 7y = 1 for all n > 1, (ii)
> oo Y < 00. Then {x,} converges strongly to some fized point of T

Proof. By Theorem 5, there exists a subsequence {x,, } of the sequence {z,}
such that

(12) ||Tx77/k = Tny H =0.

lim
k—o0
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By Condition A, we obtain
fd(zn, F(T))) < [|[Tn — anl|
for all n > 1. As in the proof of Theorem 5, we obtain
(13) [Zn41 — 2| < llzn — 2|l + M.
Thus
. < _ .
inf lznsy — 2l < inf 2 — 2l + 7 M

By Lemma 3, we see that lim,,_, o d(z,, F(T))(= r) exists. We first claim that
limy, 00 d(xy, F(T)) = 0. In fact, assume that r = lim, o d(z,, F(T)) > 0.
Then we can choose ng € N such that 0 < § < d(xy,, F(T')) for all n > ng. By
using Condition A and (12), we obtain

0 < f(5) < fld(zn,, F(T)) < [Twn, — | =0

as k — oo. This is a contradiction. So, we obtain r = 0. Next, we claim that
{z,} is a Cauchy sequence. Let € > 0 be given. Since lim,, o d(2,, F(T)) =0
and Ziozl Yn < 00, there exists ng € N such that for all n > ng, we obtain

(14) d(zn, F(T)) < = and Z% M+1)

Z’n()

I

Let n,m > ng and p € F(T'). Then, by using (13), we obtain

[2n = 2| < [lzn = pll + l[2m =l

n—1 m—1
<ang =l + D WM+ |20, —pll + > vM
’i:no i:no

2@, —pll+ Y (M +1)).

i:no

Taking the infimum over all p € F(T') on both sides and by using (14), we
obtain

[2n —zm| <2 [d(xan(T)) + > n(M 1)

i:ng
€ €
2(5+5) -
< 4—|—4 €

for all n,m > ng. This implies that {x,} is a Cauchy sequence. Let lim,, o 2,
= g. Then d(q, F(T)) = 0. Since F(T) is closed, we obtain ¢ € F(T'). Hence
{zn} converges strongly to some fixed point of 7T O

As a direct consequence, taking v, = 0 for all n > 1 in Theorem 6, we
obtain the following result, which improves Theorem 2 of Senter-Dotson [10]
under much less restriction on the iterative parameter {a,}.
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Theorem 7. Let E be a uniformly convexr Banach space, and let C be a
nonempty closed convex subset of E, and let T : C — C' be a quasi-nonezrpansive
mapping satisfying Condition A. Suppose that for any x1 € C, the sequence
{z,} is given by

Tnt1 = (1 —ap)zy + @y Txy,

for all n > 1, where {a,} in [0,1] is chosen so that > - an(l — @) = 0.
Then {x,} converges strongly to some fixed point of T.

Corollary 1 ([10]). Let E be a uniformly convex Banach space, and let C be a
nonempty closed convex subset of E, and let T : C — C be a quasi-nonexpansive
mapping satisfying Condition A. Suppose that for any x1 € C, the sequence
{z,} is given by

Tnt1 = (1 —ap)z, + @pnTxy,
for all n > 1, where {ay,} in [0,1] is chosen so that o, € [a,b] for allm > 1
and some a,b € (0,1). Then {x,} converges strongly to some fixed point of T

Theorem 8. Let E be a uniformly convex Banach space. Let C' be a nonempty
closed convex subset of E and let T,S : C — C be two quasi-nonexpansive
mappings satisfying Condition D with ¥ = F(T)( F(S) # 0. Suppose that for
any x1 in C, the sequence {x,} is defined by (3), where {an},{Bn} in [0,1]
with the restriction that >~ | Bn(1 — B,) = 0o. Then {z,} converges strongly
to a common fixed point of T and S.

Proof. For a fixed z € F, since {u,} and {v,} are bounded in C, let

M :=sup ||u, — z|| Vsup||v, — z|| < 0.
n>1 n>1

From
1Tyn — 2l < llyn — 2|l
= |lal, Sy + BLT Ty + Vvn — 2|
(15) Sa%IIan—ZII+6;||Txn—z||+7;||vn—2\|
< apllen = 2l + By llzn — 2l + wmllvn — 2|l
=L =y)llzn = 2l + yllon — 2|l
< lwn = 2l + 7, M,
we have

[Znt1 — 2l| = lanSzn + BuTyn + Ynun — 2||
< anllSzn — 2| + BullTyn — 2l + Ynllun — 2|
(16) < apllzn — 2| + ﬁn{”xn —z|| + '%M} + Ynllun — 2|
< (L=)llan = 2l + 9 M+ M
< len = 2l + (v + ) M.
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By using Lemma 3, we readily see that
Tim 2, — 2]/ (= 0
exists. Without loss of generality, we assume d > 0. By using (15), we obtain
[Tyn = 2+ m(un = Sen)|| < [Tyn — 2l + Yallun — Sz |
< e — 2l + 7 M+ M”,
where M" = sup,,> [|un, — Szy|| < 0o and
[ST5 — 2+ Yn(un — Szp)|| < [[Sz0 — 2[| + Ynllun — Szn|
< lon = 2l +y M”
< llen = 2l + 7o M+ M”.
Thus by Lemma 2, we have
[#n1 — 2|
= |lanSTp + BnTYn + Yntin — 2||
= [|an(STy — 2) + Bu(Tyn — 2) + Yu(un — 2)||
= |1Bn(Tyn — 2) + an(Sxn — 2) + Yn(uy — Sz + Sxpy — 2)
+ By (tn = STn) = BnYn(un — S|
= [1Bn(Tyn — 2) + (1 = Bn)(Szn — 2) + Y (un — Szn)
+ By (un — Sxpn) — Bnyn(un — Sz ||
= |Bn(Tyn — 2) + Bnyn(tn — Szp) + (1 = Bn) (Szp — 2)
+ (1 = Bn)vn(un — Szn)||
= [1Bn(Tyn — 2 + yn(un — Szp)) + (1 = Bn) (ST — 2 + Yn(un — Szy))||

Ty, — Sz,
< (e = 2+ M +3207) [1 = 28,0 = B0 (e S,

Hence we obtain
26n(1 = Bu) (Il — 2l + VoM + 5 M" ) b5 (

< ln = 2l = llensr = 2l + 9 M + 7 M.

| Tyn — Sz, )
|2n — 2|l + 9, M + v M”

Since
0 Tyn — Sy ||
2 n 1— n ( Tpn—2||+ ;LM—’_ nM//>5 ( H ) < 00,

and dp is strictly increasing and continuous, we obtain
(17) linrr_l)ioréf | Ty, — Szpl| = 0.
By using (16) and Lemma 3, we see that

(18) lim d(x,,F)

n—oo
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exists. By using Condition D, (17) and taking lim inf on both sides, we obtain
(19) liminf f(d(z,,F)) < liminf ||Sz, — Ty,| — 0
n— 00 n— o0

as n — oo. From the Condition D, (18) and (19), we obtain lim,,_, d(z,,F) =
0. By using similar method in the proof of Theorem 6, {x,} converges strongly
to a common fixed point of T" and S. ([

As a direct consequence, taking 7, = 0 for all n > 1 in Theorem 8, we obtain
the following result, which improves Theorem 1 of Ghosh-Debnath [3] under
much less restriction on the iterative parameter {a,}.

Theorem 9. Let E be a uniformly convex Banach space. Let C' be a nonempty
closed convex subset of E and let T,S : C — C be two quasi-nonexpansive
mappings satisfying Condition C with F = F(T)(F(S) # (. Suppose that for
any z1 in C, the sequences {x,} and {y,} are defined by

Tnt+1 = (1 - an)Smn + 0y TYn, Yn= (1 - ﬂn)smn + BTz,

where {a, }, {Bn} in [0, 1] with the restriction that Y - | an(1—ay,) = co. Then
{z,} converges strongly to a common fized point of T and S.

Corollary 2 ([3]). Let E be a uniformly convex Banach space. Let C be
a nonempty closed convexr subset of E and let T,S : C — C be two quasi-
nonezxpansive mappings satisfying Condition C with ¥ = F(T)(F(S) # 0.
Suppose that for any x1 in C, the sequences {x,} and {yn} are defined by

Tn+1 = (1 - an)an + anTyru Yn = (1 - ﬁn)sxn + ﬁnTl‘ny

where {a,} and {Bn} are chosen so that 0 <a < a, <b<1,0<6,<b<1
for alln > 1 and some a,b € (0,1). Then {x,} converges strongly to a common

fized point of T and S.

Corollary 3 ([6]). Let E be a uniformly convex Banach space. Let C be a
nonempty closed convex subset of E and let T : C' — C' be a quasi-nonerpansive
mappings satisfying Condition B. Suppose that for any x1 in C, the sequence
{zn} is defined by (1), where {ay} and {Bn} are chosen so that 0 < a < a,, <
b<1,0< B8, <b<1foraln>1 and some a,b € (0,1). Then {z,}
converges strongly to a fixed point of T.

Remark 1. If {a, } is bounded away from both 0 and 1, i.e., a < a;,, < b for all
n > 1 and some a,b € (0,1), then > 7 a,(1 — a;) = oo holds. However, the

1

converse is not true. For example, consider ay, = .

Remark 2. The concept of quasi-nonexpansive mapping is more general than
that of nonexpansive mapping.

We give two examples of quasi-nonexpansive mappings which are not non-
expansive mappings.
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Example 1. Let E = [—7, 7| and let T be defined by
Txr =2xcosx

for each € E. Clearly F(T') = {0}. T is a quasi-nonexpansive mapping since
if z € E and z = 0, then

[Tz — z|| = [Tz — 0| = |z|[cos x| < |z| = [|lz — z].
But it is not a nonexpansive mapping. In fact, if we take z = § and y = ,
then
™ ™
| Tz — Tyl = H§ cos o — wcost =,

whereas,

lo -yl =[5 -] =2

z—y|l=|=—-7|==.

Y=l 7T T g

Example 2 (cf. [2]). Let £ = R and let T be defined by
Tx cos %, x #£0,

2
=0, z =0.

If z # 0 and T'x = x, then x = 5 cos % Thus 2 = cos % This is not hold. T is
a quasi-nonexpansive mapping since if z € E and z = 0, then

||

1
[Tz — z|| = [Tz — 0] = ’g‘ COSI‘ <5 <lel=llz— =]

But it is not a nonexpansive mapping. In fact, if we take x = % and y = %,
then

||Tx—Ty||—H1C0837r—1cos7r =—,
3T 2 2m 27
whereas,
2 1)1
ool =| = - 3| - 5=
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