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WEAK AND STRONG CONVERGENCE FOR

QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

Gang Eun Kim

Abstract. In this paper, we first show that the iteration {xn} defined by

xn+1 = P ((1−αn)xn +αnTP [βnTxn + (1− βn)xn]) converges strongly
to some fixed point of T when E is a real uniformly convex Banach space
and T is a quasi-nonexpansive non-self mapping satisfying Condition A,
which generalizes the result due to Shahzad [11]. Next, we show the

strong convergence of the Mann iteration process with errors when E
is a real uniformly convex Banach space and T is a quasi-nonexpansive
self-mapping satisfying Condition A, which generalizes the result due to
Senter-Dotson [10]. Finally, we show that the iteration {xn} defined by

xn+1 = αnSxn+βnT [α′
nSxn+β′

nTxn+γ′
nvn]+γnun converges strongly

to a common fixed point of T and S when E is a real uniformly convex
Banach space and T, S are two quasi-nonexpansive self-mappings satis-
fying Condition D, which generalizes the result due to Ghosh-Debnath

[3].

1. Introduction

Let E be a real uniformly convex Banach space and let C be a nonempty
closed convex subset of E. Then a mapping T from C into E is called nonex-
pansive if ∥Tx−Ty∥ ≤ ∥x−y∥ for all x, y ∈ C. A mapping T from C into E is
also called quasi-nonexpansive if the set F (T ) of fixed points of T is nonempty
and ∥Tx − y∥ ≤ ∥x − y∥ for all x ∈ C and y ∈ F (T ). For a mapping T of C
into itself, we consider the following iteration scheme: x1 ∈ C,

(1) xn+1 = (1− αn)xn + αnT [βnTxn + (1− βn)xn]

for all n ≥ 1, where {αn} and {βn} are real sequences in [0, 1]. Such an
iteration scheme was introduced by Ishikawa [5]; see also Mann [7]. Let C be a
nonexpansive retract of E. For a mapping T from C into E, we also consider
the following iteration scheme (Shahzad [11]): x1 ∈ C,

(2) xn+1 = P ((1− αn)xn + αnTP [βnTxn + (1− βn)xn])
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for all n ≥ 1, where {αn} and {βn} are real sequences in [0, 1] and P is a
nonexpansive retraction of E onto C. If T is a self-mapping, then (2) reduces
to an iteration scheme (1). For two mappings S, T of C into itself, we also
consider a more general iterative scheme of the type (cf., Ghosh-Debnath [3],
Xu [13]) emphasizing the randomness of errors as follows:

x1 ∈ C,

xn+1 = αnSxn + βnTyn + γnun,(3)

yn = α′
nSxn + β′

nTxn + γ′
nvn,

where {αn}, {βn}, {γn}, {α′
n}, {β′

n}, {γ′
n} are real sequences in [0,1] and {un},

{vn} are two bounded sequences in C such that

(i) αn + βn + γn = α′
n + β′

n + γ′
n = 1 for all n ≥ 1,

(ii)
∑∞

n=1 γn < ∞ and
∑∞

n=1 γ
′
n < ∞.

If S = I, the identity mapping and γn = γ′
n = 0 for all n ≥ 1, then (3) reduces

to an iteration scheme (1), while setting S = I, β′
n = 0 and γ′

n = 0 for all n ≥ 1
reduces to the Mann iteration process with errors which is a generalized case
of the Mann iteration process. Recently, Shahzad [11] proved that if E is a real
uniformly convex Banach space, and C is a nonempty closed convex subset of
E which is also a nonexpansive retract of E, and T : C → E is a nonexpansive
mapping with F (T ) ̸= ∅, and T satisfies Condition A, then for any x1 in C, the
sequence {xn} defined by (2) converges strongly to some fixed point of T under
the assumption that {αn} and {βn} are such that 0 < a ≤ αn, βn ≤ b < 1
for all n ≥ 1 and some a, b ∈ (0, 1). On the other hand, Senter-Dotson [10]
proved that if E is a real uniformly convex Banach space, and C is a nonempty
closed convex subset of E, and T : C → C is a quasi-nonexpansive mapping
satisfying Condition A, then for any x1 ∈ C, the sequence {xn} defined by
xn+1 = (1−αn)xn +αnTxn converges strongly to some fixed point of T under
the assumption that {αn} in [0, 1] is chosen so that αn ∈ [a, b] for all n ≥ 1
and some a, b ∈ (0, 1). Ghosh-Debnath [3] proved that if E is a real uniformly
convex Banach space and C is a nonempty closed convex subset of E and
T, S : C → C are two quasi-nonexpansive mappings, and T, S satisfy Condition
C with F (T )

∩
F (S) ̸= ∅, then for any x1 in C, the sequence {xn} defined by

xn+1 = (1 − αn)Sxn + αnT [(1 − βn)Sxn + βnTxn] converges strongly to a
common fixed point of T and S under the assumption that {αn} and {βn}
are such that 0 < a ≤ αn ≤ b < 1, 0 ≤ βn ≤ b < 1 for all n ≥ 1 and some
a, b ∈ (0, 1), which generalized the result due to M. Maiti and M. K. Ghosh [6].

In this paper, we first prove that the iteration {xn} defined by (2) con-
verges strongly to some fixed point of T when E is a real uniformly convex
Banach space and T is a quasi-nonexpansive non-self mapping satisfying Con-
dition A, which generalizes the result due to Shahzad [11]. Next, we prove the
strong convergence of the Mann iteration process with errors when E is a real
uniformly convex Banach space and T is a quasi-nonexpansive self-mapping
satisfying Condition A, which generalizes the result due to Senter-Dotson [10].
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Finally, we prove that the iteration {xn} defined by (3) converges strongly to
a common fixed point of T and S when E is a real uniformly convex Banach
space and T, S are two quasi-nonexpansive self-mappings satisfying Condition
D, which generalizes the result due to Ghosh-Debnath [3].

2. Preliminaries

Throughout this paper, we denote by E a real Banach space. Let C be a
nonempty closed convex subset of E and let T be a mapping from C into E.
Then we denote by F (T ) the set of all fixed points of T , i.e., F (T ) = {x ∈
C : Tx = x}. A subset C of E is said to be a retract of E if there exists a
continuous mapping P : E → C such that Px = x for all x ∈ C. A mapping
P : E → E is said to be a retraction if P 2 = P . A Banach space E is said to
be uniformly convex if the modulus of convexity δE = δE(ϵ), 0 < ϵ ≤ 2, of E
defined by

δE(ϵ) = inf

{
1− ∥x+ y∥

2
: x, y ∈ E, ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
satisfies the inequality δE(ϵ) > 0 for every ϵ ∈ (0, 2]. When {xn} is a sequence
in E, then xn → x (xn ⇀ x) will denote strong (weak) convergence of the
sequence {xn} to x. A mapping T : C → E is said to be demiclosed with
respect to y ∈ E [1] if for any sequence {xn} in C, it follows from xn ⇀ x
and Txn → y that x ∈ C and T (x) = y. If I − T is demiclosed at zero, i.e.,
for any sequence {xn} in C, the conditions xn ⇀ x and xn − Txn → 0 imply
x−Tx = 0. A Banach space E is said to satisfy Opial’s condition [8] if for any
sequence {xn} in E, xn ⇀ x implies that

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥

for all y ∈ E with y ̸= x. All Hilbert spaces and lp(1 < p < ∞) satisfy Opial’s
condition, while Lp with 1 < p ̸= 2 < ∞ do not.

Condition 1 ([10]). A mapping T : C → E with F (T ) ̸= ∅ is said to satisfy
Condition A if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

∥x− Tx∥ ≥ f(d(x, F (T )))

for all x ∈ C, where d(x, F (T )) = infz∈F (T ) ∥x− z∥.

Condition 2 ([6]). A mapping T : C → C with F (T ) ̸= ∅ is said to satisfy
Condition B if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

∥x− Ty∥ ≥ f(d(x, F (T )))

for all x ∈ C with y = (1− t)x+ tTx, where 0 ≤ t ≤ β < 1 and d(x, F (T )) =
infz∈F (T ) ∥x− z∥.



802 GANG EUN KIM

Condition 3 ([3]). Two mappings T, S : C → C are said to satisfy Condition
C if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0
and f(r) > 0 for all r ∈ (0,∞) such that

∥Sx− Ty∥ ≥ f(d(x,F))

for all x, y ∈ C with y = (1 − t)Sx + tTx, where 0 ≤ t ≤ β < 1, F =
F (T )

∩
F (S) ̸= ∅ and d(x,F) = infz∈F ∥x− z∥.

Condition 4. Two mappings T, S : C → C are said to satisfy Condition D
if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r ∈ (0,∞) such that

∥Sx− Ty∥ ≥ f(d(x,F))

for all x, y ∈ C with y = αSx+ βTx+ γv for all v ∈ C, where 0 < a ≤ α ≤ 1,
0 ≤ β, γ ≤ b < 1 with α + β + γ = 1, F = F (T )

∩
F (S) ̸= ∅ and d(x,F) =

infz∈F ∥x− z∥.

If we set γ = 0, then Condition D becomes identical with Condition C,
while setting S = I and γ = 0 becomes identical with Condition B.

3. Weak and strong convergence theorems

We first begin with the following lemma.

Lemma 1 ([9]). Let E be a uniformly convex Banach space, 0 < b ≤ tn ≤
c < 1 for all n ≥ 1 and some b, c ∈ (0, 1) and some a ≥ 0. Suppose that
{xn}∞n=1 and {yn}∞n=1 are sequences of E such that lim supn→∞ ∥xn∥ ≤ a,
lim supn→∞ ∥yn∥ ≤ a, and limn→∞ ∥tnxn + (1− tn)yn∥ = a. Then

lim
n→∞

∥xn − yn∥ = 0.

Lemma 2 ([4]). Let E be a uniformly convex Banach space. Let x, y ∈ E. If
∥x∥ ≤ 1, ∥y∥ ≤ 1, and ∥x−y∥ ≥ ϵ > 0, then ∥λx+(1−λ)y∥ ≤ 1−2λ(1−λ)δ(ϵ)
for λ with 0 ≤ λ ≤ 1.

Lemma 3 ([12]). Let {an} and {bn} be sequences of nonnegative real numbers
such that

∑∞
n=1 bn < ∞ and

an+1 ≤ an + bn

for all n ≥ 1. Then limn→∞ an exists.

Our Theorem 1 carries over Theorem 3.3 of Shahzad [11] to a quasi-non-
expansive mapping.

Theorem 1. Let E be a uniformly convex Banach space, and let C be a
nonempty closed convex subset of E which is also a nonexpansive retract of
E, and let T : C → E be a quasi-nonexpansive mapping. Suppose that for any
x1 in C, the sequence {xn} is defined by (2), where {αn} and {βn} are chosen
so that 0 < a ≤ αn, βn ≤ b < 1 for all n ≥ 1 and some a, b ∈ (0, 1). Then
limn→∞ ∥Txn − xn∥ = 0.
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Proof. For any z ∈ F (T ), since

(4)

∥xn+1 − z∥ = ∥P ((1− αn)xn + αnTP [βnTxn + (1− βn)xn])− Pz∥
≤ ∥(1− αn)xn + αnTP [βnTxn + (1− βn)xn]− z∥
≤ (1− αn)∥xn − z∥+ αn∥TP [βnTxn + (1− βn)xn]− z∥
≤ (1− αn)∥xn − z∥+ αn∥P [βnTxn + (1− βn)xn]− Pz∥
≤ (1− αn)∥xn − z∥+ αn∥βnTxn + (1− βn)xn − z∥
≤ (1− αn)∥xn − z∥+ αn[βn∥Txn − z∥+ (1− βn)∥xn − z∥]
≤ (1− αn)∥xn − z∥+ αn[βn∥xn − z∥+ (1− βn)∥xn − z∥]
≤ (1− αn)∥xn − z∥+ αn∥xn − z∥
= ∥xn − z∥,

and thus the sequence {∥xn − z∥} is nonincreasing and bounded below. Hence
we see that

(5) lim
n→∞

∥xn − z∥(≡ c)

exists. If c = 0, then the conclusion is obvious. So, we assume c > 0. Put
yn = P [βnTxn + (1− βn)xn] for all n ≥ 1. Then

(6)

∥yn − z∥ = ∥P [βnTxn + (1− βn)xn]− Pz∥
≤ ∥βnTxn + (1− βn)xn − z∥
≤ βn∥Txn − z∥+ (1− βn)∥xn − z∥
≤ βn∥xn − z∥+ (1− βn)∥xn − z∥
= ∥xn − z∥.

So, we have

(7) lim sup
n→∞

∥yn − z∥ ≤ c.

By using (6), we obtain

∥Tyn − z∥ ≤ ∥yn − z∥ ≤ ∥xn − z∥.

By using Lemma 2, we have

∥xn+1 − z∥ = ∥P ((1− αn)xn + αnTyn)− Pz∥
≤ ∥(1− αn)xn + αnTyn − z∥
= ∥αn(Tyn − z) + (1− αn)(xn − z)∥

≤
(
∥xn − z∥

)[
1− 2αn(1− αn)δE

(∥Tyn − xn∥
∥xn − z∥

)]
.

Hence we obtain

2αn(1− αn)
(
∥xn − z∥

)
δE

(∥Tyn − xn∥
∥xn − z∥

)
≤ ∥xn − z∥ − ∥xn+1 − z∥.
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Since

2a(1− b)

∞∑
n=1

(
∥xn − z∥

)
δE

(∥Tyn − xn∥
∥xn − z∥

)
< ∞,

and δE is strictly increasing and continuous, we obtain

(8) lim
n→∞

∥Tyn − xn∥ = 0.

Since

∥xn − z∥ ≤ ∥xn − Tyn∥+ ∥Tyn − z∥
≤ ∥xn − Tyn∥+ ∥yn − z∥,

and by (8), we obtain

(9) c ≤ lim inf
n→∞

∥yn − z∥

By using (7) and (9), we obtain

c = lim
n→∞

∥yn − z∥

= lim
n→∞

∥P [βnTxn + (1− βn)xn]− Pz∥

≤ lim
n→∞

∥βnTxn + (1− βn)xn − z∥

= lim
n→∞

∥βn(Txn − z) + (1− βn)(xn − z)∥

≤ lim
n→∞

{βn∥Txn − z∥+ (1− βn)∥xn − z∥}

≤ lim
n→∞

{βn∥xn − z∥+ (1− βn)∥xn − z∥}

= lim
n→∞

∥xn − z∥ = c.

By using lim supn→∞ ∥Txn − z∥ ≤ c and Lemma 1, we obtain limn→∞ ∥Txn −
xn∥ = 0. □

Theorem 2. Let E be a uniformly convex Banach space satisfying Opial’s
condition, and let C be a nonempty closed convex subset of E which is also a
nonexpansive retract of E, and let T : C → E be a quasi-nonexpansive mapping
with I−T demiclosed at zero. Suppose that for any x1 in C, the sequence {xn}
is defined by (2), where {αn} and {βn} are chosen so that 0 < a ≤ αn, βn ≤
b < 1 for all n ≥ 1 and some a, b ∈ (0, 1). Then {xn} converges weakly to some
fixed point of T .

Proof. For any z ∈ F (T ), by (5) in the proof of Theorem 1, {xn} is bounded.
Let z1 and z2 be two weak subsequential limits of the sequence {xn}. Then
we claim that the conditions xnp ⇀ z1 and xnq ⇀ z2 imply z1 = z2 ∈ F (T ).
In fact, since I − T demiclosed at zero and by using Theorem 1, we have
z1, z2 ∈ F (T ). Next, we show z1 = z2. If not, by Opial’s condition and (5) in



WEAK AND STRONG CONVERGENCE THEOREMS 805

the proof of Theorem 1,

lim
n→∞

∥xn − z1∥ = lim
p→∞

∥xnp − z1∥

< lim
p→∞

∥xnp − z2∥

= lim
n→∞

∥xn − z2∥

and by using similar method, we have

lim
n→∞

∥xn − z2∥ < lim
n→∞

∥xn − z1∥.

This is a contradiction. Hence we have z1 = z2. Therefore {xn} converges
weakly to some fixed point of T . □

Our Theorem 3 carries over Theorem 3.6 of Shahzad [11] to a quasi-non-
expansive mapping.

Theorem 3. Let E be a uniformly convex Banach space, and let C be a
nonempty closed convex subset of E which is also a nonexpansive retract of
E, and let T : C → E be a quasi-nonexpansive mapping, and T satisfies Con-
dition A. Suppose that for any x1 in C, the sequence {xn} is defined by (2),
where {αn} and {βn} are chosen so that 0 < a ≤ αn, βn ≤ b < 1 for all n ≥ 1
and some a, b ∈ (0, 1). Then {xn} converges strongly to some fixed point of T .

Proof. By using Condition A, we obtain

f(d(xn, F (T ))) ≤ ∥Txn − xn∥
for all n ≥ 1. By using (4) in the proof of Theorem 1, we obtain

inf
z∈F (T )

∥xn+1 − z∥ ≤ inf
z∈F (T )

∥xn − z∥.

Thus limn→∞ d(xn, F (T ))(≡ k) exists. We first claim that limn→∞ d(xn, F (T ))
= 0. In fact, assume that k = limn→∞ d(xn, F (T )) > 0. Then we can choose
n0 ∈ N such that 0 < k

2 < d(xn, F (T )) for all n ≥ n0. By using Condition A
and Theorem 1, we obtain

0 < f(k2 ) ≤ f(d(xn, F (T ))) ≤ ∥Txn − xn∥ → 0

as n → ∞. This is a contradiction. So, we obtain k = 0. Next, we claim that
{xn} is a Cauchy sequence. Let ϵ > 0 be given. Since limn→∞ d(xn, F (T )) = 0,
there exists n0 ∈ N such that for all n ≥ n0, we obtain

(10) d(xn, F (T )) <
ϵ

2
.

Let n,m ≥ n0 and p ∈ F (T ). Then, from (4) in the proof of Theorem 1, we
obtain

∥xn − xm∥ ≤ ∥xn − p∥+ ∥xm − p∥
≤ 2[∥xn0 − p∥].

Taking the infimum over all p ∈ F (T ) on both sides and by (10), we obtain

∥xn − xm∥ ≤ 2[d(xn0 , F (T ))] < ϵ
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for all n,m ≥ n0. This implies that {xn} is a Cauchy sequence. Let limn→∞ xn

= q. Then d(q, F (T )) = 0. Since F (T ) is closed, we obtain q ∈ F (T ). Hence
{xn} converges strongly to some fixed point of T . □

Theorem 4. Let E be a uniformly convex Banach space, and let C be a
nonempty closed convex subset of E which is also a nonexpansive retract of
E, and let T : C → E be a continuous quasi-nonexpansive mapping, and let
T (C) be contained in a compact subset of E. Suppose that for any x1 in C,
the sequence {xn} is defined by (2), where {αn} and {βn} are chosen so that
0 < a ≤ αn, βn ≤ b < 1 for all n ≥ 1 and some a, b ∈ (0, 1). Then {xn}
converges strongly to some fixed point of T .

Proof. Since {xn} is well-defined and the closure of T (C) is compact, there
exists a subsequence {Txni

} of the sequence {Txn} such that {Txni
} → z.

By Theorem 1, we can choose a subsequence {xni} of {xn} such that {xni}
converges strongly to z. Thus, by using Theorem 1 and the continuity of
T , we obtain z ∈ F (T ). From (5) in the proof of Theorem 1, we obtain
limn→∞ ∥xn − z∥ = 0. □

Theorem 5. Let E be a uniformly convex Banach space, and let C be a
nonempty closed convex subset of E, and let T : C → C be a quasi-nonexpansive
mapping. Suppose that for any x1 in C, the sequence {xn} is defined by

xn+1 = αnxn + βnTxn + γnun,

where {αn}, {βn} and {γn} in [0, 1] with
∑∞

n=1 βn(1− βn) = ∞, and {un} is
a bounded sequence in C such that (i) αn + βn + γn = 1 for all n ≥ 1, (ii)∑∞

n=1 γn < ∞. Then lim infn→∞ ∥Txn − xn∥ = 0.

Proof. For a fixed z ∈ F (T ), since {un} is bounded in C, let

M := sup
n≥1

∥un − z∥ < ∞.

From
∥xn+1 − z∥ = ∥αnxn + βnTxn + γnun − z∥

≤ αn∥xn − z∥+ βn∥Txn − z∥+ γn∥un − z∥
≤ αn∥xn − z∥+ βn∥xn − z∥+ γn∥un − z∥
= (1− γn)∥xn − z∥+ γn∥un − z∥
≤ ∥xn − z∥+ γnM

and Lemma 3, we readily see that

(11) lim
n→∞

∥xn − z∥(≡ c)

exists. If c = 0, then the conclusion is obvious. So, we assume c > 0. Since

∥Txn − z + γn(un − xn)∥ ≤ ∥Txn − z∥+ γn∥un − xn∥
≤ ∥xn − z∥+ γnM

′,
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where M ′ = supn≥1 ∥un − xn∥ < ∞ and

∥xn − z + γn(un − xn)∥ ≤ ∥xn − z∥+ γnM
′,

and by Lemma 2, we have

∥xn+1 − z∥
= ∥αnxn + βnTxn + γnun − z∥
= ∥αn(xn − z) + βn(Txn − z) + γn(un − z)∥
= ∥βn(Txn − z) + αn(xn − z) + γn(un − xn + xn − z)

+ βnγn(un − xn)− βnγn(un − xn)∥
= ∥βn(Txn − z) + (1− βn)(xn − z) + γn(un − xn)

+ βnγn(un − xn)− βnγn(un − xn)∥
= ∥βn(Txn − z) + βnγn(un − xn) + (1− βn)(xn − z)

+ (1− βn)γn(un − xn)∥
= ∥βn(Txn − z + γn(un − xn)) + (1− βn)(xn − z + γn(un − xn))∥

≤
(
∥xn − z∥+ γnM

′
)[

1− 2βn(1− βn)δE

( ∥Txn − xn∥
∥xn − z∥+ γnM ′

)]
.

Hence we obtain

2βn(1− βn)
(
∥xn − z∥+ γnM

′
)
δE

( ∥Txn − xn∥
∥xn − z∥+ γnM ′

)
≤ ∥xn − z∥ − ∥xn+1 − z∥+ γnM

′.

Since

2

∞∑
n=1

βn(1− βn)
(
∥xn − z∥+ γnM

′
)
δE

( ∥Txn − xn∥
∥xn − z∥+ γnM ′

)
< ∞,

and δE is strictly increasing and continuous, we obtain

lim inf
n→∞

∥Txn − xn∥ = 0. □

Theorem 6. Let E be a uniformly convex Banach space. Let C be a nonempty
closed convex subset of E and let T : C → C be a quasi-nonexpansive mapping
satisfying Condition A. Suppose that for any x1 in C, the sequence {xn} is
defined by

xn+1 = αnxn + βnTxn + γnun,

where {αn}, {βn} and {γn} in [0, 1] with
∑∞

n=1 βn(1− βn) = ∞, and {un} is
a bounded sequence in C such that (i) αn + βn + γn = 1 for all n ≥ 1, (ii)∑∞

n=1 γn < ∞. Then {xn} converges strongly to some fixed point of T .

Proof. By Theorem 5, there exists a subsequence {xnk
} of the sequence {xn}

such that

(12) lim
k→∞

∥Txnk
− xnk

∥ = 0.
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By Condition A, we obtain

f(d(xn, F (T ))) ≤ ∥Txn − xn∥

for all n ≥ 1. As in the proof of Theorem 5, we obtain

(13) ∥xn+1 − z∥ ≤ ∥xn − z∥+ γnM.

Thus

inf
z∈F

∥xn+1 − z∥ ≤ inf
z∈F

∥xn − z∥+ γnM.

By Lemma 3, we see that limn→∞ d(xn, F (T ))(≡ r) exists. We first claim that
limn→∞ d(xn, F (T )) = 0. In fact, assume that r = limn→∞ d(xn, F (T )) > 0.
Then we can choose n0 ∈ N such that 0 < r

2 < d(xn, F (T )) for all n ≥ n0. By
using Condition A and (12), we obtain

0 < f( r2 ) ≤ f(d(xnk
, F (T ))) ≤ ∥Txnk

− xnk
∥ → 0

as k → ∞. This is a contradiction. So, we obtain r = 0. Next, we claim that
{xn} is a Cauchy sequence. Let ϵ > 0 be given. Since limn→∞ d(xn, F (T )) = 0
and

∑∞
n=1 γn < ∞, there exists n0 ∈ N such that for all n ≥ n0, we obtain

(14) d(xn, F (T )) <
ϵ

4
and

∞∑
i=n0

γi <
ϵ

4(M + 1)
.

Let n,m ≥ n0 and p ∈ F (T ). Then, by using (13), we obtain

∥xn − xm∥ ≤ ∥xn − p∥+ ∥xm − p∥

≤ ∥xn0 − p∥+
n−1∑
i=n0

γiM + ∥xn0 − p∥+
m−1∑
i=n0

γiM

≤ 2[∥xn0
− p∥+

∞∑
i=n0

γi(M + 1)].

Taking the infimum over all p ∈ F (T ) on both sides and by using (14), we
obtain

∥xn − xm∥ ≤ 2

[
d(xn0 , F (T )) +

∞∑
i=n0

γi(M + 1)

]
< 2

( ϵ

4
+

ϵ

4

)
= ϵ

for all n,m ≥ n0. This implies that {xn} is a Cauchy sequence. Let limn→∞ xn

= q. Then d(q, F (T )) = 0. Since F (T ) is closed, we obtain q ∈ F (T ). Hence
{xn} converges strongly to some fixed point of T . □

As a direct consequence, taking γn = 0 for all n ≥ 1 in Theorem 6, we
obtain the following result, which improves Theorem 2 of Senter-Dotson [10]
under much less restriction on the iterative parameter {αn}.
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Theorem 7. Let E be a uniformly convex Banach space, and let C be a
nonempty closed convex subset of E, and let T : C → C be a quasi-nonexpansive
mapping satisfying Condition A. Suppose that for any x1 ∈ C, the sequence
{xn} is given by

xn+1 = (1− αn)xn + αnTxn

for all n ≥ 1, where {αn} in [0, 1] is chosen so that
∑∞

n=1 αn(1 − αn) = ∞.
Then {xn} converges strongly to some fixed point of T .

Corollary 1 ([10]). Let E be a uniformly convex Banach space, and let C be a
nonempty closed convex subset of E, and let T : C → C be a quasi-nonexpansive
mapping satisfying Condition A. Suppose that for any x1 ∈ C, the sequence
{xn} is given by

xn+1 = (1− αn)xn + αnTxn

for all n ≥ 1, where {αn} in [0, 1] is chosen so that αn ∈ [a, b] for all n ≥ 1
and some a, b ∈ (0, 1). Then {xn} converges strongly to some fixed point of T .

Theorem 8. Let E be a uniformly convex Banach space. Let C be a nonempty
closed convex subset of E and let T, S : C → C be two quasi-nonexpansive
mappings satisfying Condition D with F = F (T )

∩
F (S) ̸= ∅. Suppose that for

any x1 in C, the sequence {xn} is defined by (3), where {αn}, {βn} in [0, 1]
with the restriction that

∑∞
n=1 βn(1− βn) = ∞. Then {xn} converges strongly

to a common fixed point of T and S.

Proof. For a fixed z ∈ F, since {un} and {vn} are bounded in C, let

M := sup
n≥1

∥un − z∥ ∨ sup
n≥1

∥vn − z∥ < ∞.

From

(15)

∥Tyn − z∥ ≤ ∥yn − z∥
= ∥α′

nSxn + β′
nTxn + γ′

nvn − z∥
≤ α′

n∥Sxn − z∥+ β′
n∥Txn − z∥+ γ′

n∥vn − z∥
≤ α′

n∥xn − z∥+ β′
n∥xn − z∥+ γ′

n∥vn − z∥
= (1− γ′

n)∥xn − z∥+ γ′
n∥vn − z∥

≤ ∥xn − z∥+ γ′
nM,

we have

(16)

∥xn+1 − z∥ = ∥αnSxn + βnTyn + γnun − z∥
≤ αn∥Sxn − z∥+ βn∥Tyn − z∥+ γn∥un − z∥
≤ αn∥xn − z∥+ βn{∥xn − z∥+ γ′

nM}+ γn∥un − z∥
≤ (1− γn)∥xn − z∥+ γ′

nM + γnM

≤ ∥xn − z∥+ (γ′
n + γn)M.
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By using Lemma 3, we readily see that

lim
n→∞

∥xn − z∥(≡ d)

exists. Without loss of generality, we assume d > 0. By using (15), we obtain

∥Tyn − z + γn(un − Sxn)∥ ≤ ∥Tyn − z∥+ γn∥un − Sxn∥
≤ ∥xn − z∥+ γ′

nM + γnM
′′,

where M ′′ = supn≥1 ∥un − Sxn∥ < ∞ and

∥Sxn − z + γn(un − Sxn)∥ ≤ ∥Sxn − z∥+ γn∥un − Sxn∥
≤ ∥xn − z∥+ γnM

′′

≤ ∥xn − z∥+ γ′
nM + γnM

′′.

Thus by Lemma 2, we have

∥xn+1 − z∥
= ∥αnSxn + βnTyn + γnun − z∥
= ∥αn(Sxn − z) + βn(Tyn − z) + γn(un − z)∥
= ∥βn(Tyn − z) + αn(Sxn − z) + γn(un − Sxn + Sxn − z)

+ βnγn(un − Sxn)− βnγn(un − Sxn)∥
= ∥βn(Tyn − z) + (1− βn)(Sxn − z) + γn(un − Sxn)

+ βnγn(un − Sxn)− βnγn(un − Sxn)∥
= ∥βn(Tyn − z) + βnγn(un − Sxn) + (1− βn)(Sxn − z)

+ (1− βn)γn(un − Sxn)∥
= ∥βn(Tyn − z + γn(un − Sxn)) + (1− βn)(Sxn − z + γn(un − Sxn))∥

≤
(
∥xn − z∥+ γ′

nM + γnM
′′
)[

1− 2βn(1− βn)δE

( ∥Tyn − Sxn∥
∥xn − z∥+ γ′

nM + γnM ′′

)]
.

Hence we obtain

2βn(1− βn)
(
∥xn − z∥+ γ′

nM + γnM
′′
)
δE

( ∥Tyn − Sxn∥
∥xn − z∥+ γ′

nM + γnM ′′

)
≤ ∥xn − z∥ − ∥xn+1 − z∥+ γ′

nM + γnM
′′.

Since

2
∞∑

n=1

βn(1−βn)
(
∥xn−z∥+γ′

nM+γnM
′′
)
δE

( ∥Tyn − Sxn∥
∥xn − z∥+ γ′

nM + γnM ′′

)
< ∞,

and δE is strictly increasing and continuous, we obtain

(17) lim inf
n→∞

∥Tyn − Sxn∥ = 0.

By using (16) and Lemma 3, we see that

(18) lim
n→∞

d(xn,F)
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exists. By using Condition D, (17) and taking lim inf on both sides, we obtain

(19) lim inf
n→∞

f(d(xn,F)) ≤ lim inf
n→∞

∥Sxn − Tyn∥ → 0

as n → ∞. From the ConditionD, (18) and (19), we obtain limn→∞ d(xn,F) =
0. By using similar method in the proof of Theorem 6, {xn} converges strongly
to a common fixed point of T and S. □

As a direct consequence, taking γn = 0 for all n ≥ 1 in Theorem 8, we obtain
the following result, which improves Theorem 1 of Ghosh-Debnath [3] under
much less restriction on the iterative parameter {αn}.

Theorem 9. Let E be a uniformly convex Banach space. Let C be a nonempty
closed convex subset of E and let T, S : C → C be two quasi-nonexpansive
mappings satisfying Condition C with F = F (T )

∩
F (S) ̸= ∅. Suppose that for

any x1 in C, the sequences {xn} and {yn} are defined by

xn+1 = (1− αn)Sxn + αnTyn, yn = (1− βn)Sxn + βnTxn,

where {αn}, {βn} in [0, 1] with the restriction that
∑∞

n=1 αn(1−αn) = ∞. Then
{xn} converges strongly to a common fixed point of T and S.

Corollary 2 ([3]). Let E be a uniformly convex Banach space. Let C be
a nonempty closed convex subset of E and let T, S : C → C be two quasi-
nonexpansive mappings satisfying Condition C with F = F (T )

∩
F (S) ̸= ∅.

Suppose that for any x1 in C, the sequences {xn} and {yn} are defined by

xn+1 = (1− αn)Sxn + αnTyn, yn = (1− βn)Sxn + βnTxn,

where {αn} and {βn} are chosen so that 0 < a ≤ αn ≤ b < 1, 0 ≤ βn ≤ b < 1
for all n ≥ 1 and some a, b ∈ (0, 1). Then {xn} converges strongly to a common
fixed point of T and S.

Corollary 3 ([6]). Let E be a uniformly convex Banach space. Let C be a
nonempty closed convex subset of E and let T : C → C be a quasi-nonexpansive
mappings satisfying Condition B. Suppose that for any x1 in C, the sequence
{xn} is defined by (1), where {αn} and {βn} are chosen so that 0 < a ≤ αn ≤
b < 1, 0 ≤ βn ≤ b < 1 for all n ≥ 1 and some a, b ∈ (0, 1). Then {xn}
converges strongly to a fixed point of T .

Remark 1. If {αn} is bounded away from both 0 and 1, i.e., a ≤ αn ≤ b for all
n ≥ 1 and some a, b ∈ (0, 1), then

∑∞
n=1 αn(1− αn) = ∞ holds. However, the

converse is not true. For example, consider αn = 1
n .

Remark 2. The concept of quasi-nonexpansive mapping is more general than
that of nonexpansive mapping.

We give two examples of quasi-nonexpansive mappings which are not non-
expansive mappings.
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Example 1. Let E = [−π, π] and let T be defined by

Tx = x cosx

for each x ∈ E. Clearly F (T ) = {0}. T is a quasi-nonexpansive mapping since
if x ∈ E and z = 0, then

∥Tx− z∥ = ∥Tx− 0∥ = |x|| cosx| ≤ |x| = ∥x− z∥.

But it is not a nonexpansive mapping. In fact, if we take x = π
2 and y = π,

then

∥Tx− Ty∥ =
∥∥∥π
2
cos

π

2
− π cosπ

∥∥∥ = π,

whereas,

∥x− y∥ =
∥∥∥π
2
− π

∥∥∥ =
π

2
.

Example 2 (cf. [2]). Let E = R and let T be defined by

Tx = x
2 cos 1

x , x ̸= 0,

= 0, x = 0.

If x ̸= 0 and Tx = x, then x = x
2 cos 1

x . Thus 2 = cos 1
x . This is not hold. T is

a quasi-nonexpansive mapping since if x ∈ E and z = 0, then

∥Tx− z∥ = ∥Tx− 0∥ =
∣∣∣x
2

∣∣∣ ∣∣∣∣cos 1x
∣∣∣∣ ≤ |x|

2
< |x| = ∥x− z∥.

But it is not a nonexpansive mapping. In fact, if we take x = 2
3π and y = 1

π ,
then

∥Tx− Ty∥ =

∥∥∥∥ 1

3π
cos

3π

2
− 1

2π
cosπ

∥∥∥∥ =
1

2π
,

whereas,

∥x− y∥ =

∥∥∥∥ 2

3π
− 1

π

∥∥∥∥ =
1

3π
.
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