• Title/Summary/Keyword: M-ideals

Search Result 153, Processing Time 0.156 seconds

Weakly Classical Prime Submodules

  • Mostafanasab, Hojjat;Tekir, Unsal;Oral, Kursat Hakan
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1085-1101
    • /
    • 2016
  • In this paper, all rings are commutative with nonzero identity. Let M be an R-module. A proper submodule N of M is called a classical prime submodule, if for each $m{\in}M$ and elements a, $b{\in}R$, $abm{\in}N$ implies that $am{\in}N$ or $bm{\in}N$. We introduce the concept of "weakly classical prime submodules" and we will show that this class of submodules enjoys many properties of weakly 2-absorbing ideals of commutative rings. A proper submodule N of M is a weakly classical prime submodule if whenever $a,b{\in}R$ and $m{\in}M$ with $0{\neq}abm{\in}N$, then $am{\in}N$ or $bm{\in}N$.

On the Local Cohomology and Formal Local Cohomology Modules

  • Shahram Rezaei;Behruz Sadeghi
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.37-43
    • /
    • 2023
  • Let 𝔞 and 𝔟 be ideals of a commutative Noetherian ring R and M be a finitely generated R-module of dimension d > 0. We prove some results concerning the top local cohomology and top formal local cohomology modules. Among other things, we determine SuppR(𝔟 Hd𝔞(M)) and SuppR(𝔟𝔉d𝔞(M)). Also, we obtain some relations between AnnR(𝔟 Hd𝔞(M)), AttR(𝔟 Hd𝔞(M)) and SuppR(𝔟 Hd𝔞(M)) and we get similar results for 𝔟𝔉d𝔞(M).

On Commutativity of σ-Prime Γ-Rings

  • DEY, KALYAN KUMAR;PAUL, AKHIL CHANDRA;DAVVAZ, BIJAN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.827-835
    • /
    • 2015
  • Let U be a ${\sigma}$-square closed Lie ideal of a 2-torsion free ${\sigma}$-prime ${\Gamma}$-ring M. Let $d{\neq}1$ be an automorphism of M such that $[u,d(u)]_{\alpha}{\in}Z(M)$ on U, $d{\sigma}={\sigma}d$ on U, and there exists $u_0$ in $Sa_{\sigma}(M)$ with $M{\Gamma}u_0{\subseteq}U$. Then, $U{\subseteq}Z(M)$. By applying this result, we generalize the results of Oukhtite and Salhi respect to ${\Gamma}$-rings. Finally, for a non-zero derivation of a 2-torsion free ${\sigma}$-prime $\Gamma$-ring, we obtain suitable conditions under which the $\Gamma$-ring must be commutative.

COHEN-MACAULAY MODULES OVER NOETHERIAN LOCAL RINGS

  • Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.373-386
    • /
    • 2014
  • Let (R,m) be a commutative Noetherian local ring. In this paper we show that a finitely generated R-module M of dimension d is Cohen-Macaulay if and only if there exists a proper ideal I of R such that depth($M/I^nM$) = d for $n{\gg}0$. Also we show that, if dim(R) = d and $I_1{\subset}\;{\cdots}\;{\subset}I_n$ is a chain of ideals of R such that $R/I_k$ is maximal Cohen-Macaulay for all k, then $n{\leq}{\ell}_R(R/(a_1,{\ldots},a_d)R)$ for every system of parameters $a1,{\ldots},a_d$ of R. Also, in the case where dim(R) = 2, we prove that the ideal transform $D_m(R/p)$ is minimax balanced big Cohen-Macaulay, for every $p{\in}Assh_R$(R), and we give some equivalent conditions for this ideal transform being maximal Cohen-Macaulay.

HEREDITARY PROPERTIES OF CERTAIN IDEALS OF COMPACT OPERATORS

  • Cho, Chong-Man;Lee, Eun-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.457-464
    • /
    • 2004
  • Let X be a Banach space and Z a closed subspace of a Banach space Y. Denote by L(X, Y) the space of all bounded linear operators from X to Y and by K(X, Y) its subspace of compact linear operators. Using Hahn-Banach extension operators corresponding to ideal projections, we prove that if either $X^{**}$ or $Y^{*}$ has the Radon-Nikodym property and K(X, Y) is an M-ideal (resp. an HB-subspace) in L(X, Y), then K(X, Z) is also an M-ideal (resp. HB-subspace) in L(X, Z). If L(X, Y) has property SU instead of being an M-ideal in L(X, Y) in the above, then K(X, Z) also has property SU in L(X, Z). If X is a Banach space such that $X^{*}$ has the metric compact approximation property with adjoint operators, then M-ideal (resp. HB-subspace) property of K(X, Y) in L(X, Y) is inherited to K(X, Z) in L(X, Z).

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

k-NIL RADICAL IN BCI-ALGEBRAS II

  • Jun, Y.B;Hong, S.M
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.499-505
    • /
    • 1997
  • This paper is a continuation of [3]. We prove that if A is quasi-associative (resp. an implicative) ideal of a BCI-algebra X then the k-nil radical of A is a quasi-associative (resp. an implicative) ideal of X. We also construct the quotient algebra $X/[Z;k]$ of a BCI-algebra X by the k-nhil radical [A;k], and show that if A and B are closed ideals of BCI-algebras X and Y respectively, then

  • PDF

M-IDEALS AND PROPERTY SU

  • Cho, Chong-Man;Roh, Woo-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.663-668
    • /
    • 2001
  • X and Y are Banach spaces for which K(X, Y), the space of compact operators from X to Y, is an M-ideal in L(X, Y), the space of bounded linear operators form X to Y. If Z is a closed subspace of Y such that L(X, Z) has property SU in L(X, Y) and d(T, K(X, Z)) = d(T, K(X, Y)) for all $T \in L(X, Z)$, then K(X, Z) is an M-ideal in L(X, Z) if and only if it has property SU is L(X, Z).

  • PDF

THE ALTERNATIVE DUNFORD-PETTIS PROPERTY IN SUBSPACES OF OPERATOR IDEALS

  • Moshtaghioun, S. Mohammad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.743-750
    • /
    • 2010
  • For several Banach spaces X and Y and operator ideal $\cal{U}$, if $\cal{U}$(X, Y) denotes the component of operator ideal $\cal{U}$; according to Freedman's definitions, it is shown that a necessary and sufficient condition for a closed subspace $\cal{M}$ of $\cal{U}$(X, Y) to have the alternative Dunford-Pettis property is that all evaluation operators $\phi_x\;:\;\cal{M}\;{\rightarrow}\;Y$ and $\psi_{y^*}\;:\;\cal{M}\;{\rightarrow}\;X^*$ are DP1 operators, where $\phi_x(T)\;=\;Tx$ and $\psi_{y^*}(T)\;=\;T^*y^*$ for $x\;{\in}\;X$, $y^*\;{\in}\;Y^*$ and $T\;{\in}\;\cal{M}$.

MAXIMAL IDEALS IN POLYNOMIAL RINGS

  • Cho, Young-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.117-119
    • /
    • 1985
  • Let R be a commutative noetherian ring with 1.neq.0, denoting by .nu.(I) the cardinality of a minimal basis of the ideal I. Let A be a polynomial ring in n>0 variables with coefficients in R, and let M be a maximal ideal of A. Generally it is shown that .nu.(M $A_{M}$).leq..nu.(M).leq..nu.(M $A_{M}$)+1. It is well known that the lower bound is not always satisfied, and the most classical examples occur in nonfactional Dedekind domains. But in many cases, (e.g., A is a polynomial ring whose coefficient ring is a field) the lower bound is attained. In [2] and [3], the conditions when the lower bound is satisfied is investigated. Especially in [3], it is shown that .nu.(M)=.nu.(M $A_{M}$) if M.cap.R=p is a maximal ideal or $A_{M}$ (equivalently $R_{p}$) is not regular or n>1. Hence the problem of determining whether .nu.(M)=.nu.(M $A_{M}$) can be studied when p is not maximal, $A_{M}$ is regular and n=1. The purpose of this note is to provide some conditions in which the lower bound is satisfied, when n=1 and R is a regular local ring (hence $A_{M}$ is regular)./ is regular).

  • PDF