Browse > Article
http://dx.doi.org/10.4134/JKMS.2002.39.1.127

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1  

Kim, Mee-Kyoung (Department of Mathematics Sungkyunkwan University)
Publication Information
Journal of the Korean Mathematical Society / v.39, no.1, 2002 , pp. 127-135 More about this Journal
Abstract
Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.
Keywords
Rees algebra; associated graded ring; Cohen-Macaulay ring; Gorenstein ring; a-invariant;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced mathematics, vol. 39, Cambridge University, Cambridge-New York-Port Chester-Sydney, 1993
2 S. Goto, S. Iai, and M. Kim, Good ideals in Gorenstein local rings obtained by idealization, Proc. Amer. Math. Soc. (to appear)
3 S. Gato, S. Iai, and K. Watanabe, Good ideals in Gorenstein local rings, Trans. Amer. Math. Soc. (to appear)
4 S. Gato and M. Kim, Equimultiple good ideals, J. Math. Kyoto Univ. (to appear)
5 S. Goto and K. Watanabe, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179-213   DOI
6 J. Herzog and E. Kunz (eds.), Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, vol. 238, Springer-Verlag, Berlin${\cdot}$Heidelberg${\cdot}$New York${\cdot}$Tokyo, 1971.
7 H. Matsumura, Commutative ring theory, Cambridge University, Cambridge${\cdot}$London${\cdot}$Sydney, 1986.
8 M. Nagata, Local rings, Interscience, 1962
9 P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978),93-101.   DOI