Bull. Korean Math. Soc. 41 (2004), No. 3, pp. 457-464

HEREDITARY PROPERTIES OF CERTAIN
IDEALS OF COMPACT OPERATORS

CHONG-MAN CHO AND EUN JOoO LEE

ABSTRACT. Let X be a Banach space and Z a closed subspace of a
Banach space Y. Denote by £(X,Y) the space of all bounded linear
operators from X to Y and by K(X,Y) its subspace of compact
linear operators. Using Hahn-Banach extension operators corre-
sponding to ideal projections, we prove that if either X** or Y* has
the Radon-Nikodgm property and (X, Y) is an M-ideal (resp. an
H B-subspace) in £(X,Y), then K(X, Z) is also an M-ideal (resp.
HB-subspace) in £(X,Z). If K(X,Y) has property SU instead of
being an M-ideal in £(X,Y) in the above, then K(X, Z) also has
property SU in £(X, Z). If X is a Banach space such that X™ has
the metric compact approximation property with adjoint operators,
then M-ideal (resp. H B-subspace) property of K(X,Y) in £(X,Y)
is inherited to K(X, Z) in £(X, Z).

1. Introduction

A closed subspace F of a Banach space X is called an ideal in X if
E*, the annihilator of E in X*, is the kernel of a norm one projection
P on X*. In this case P is called the ideal projection. The notion of an
ideal in a Banach space was introduced by Godefroy, Kalton and Shaper

[4] in 1993.

Let F be an ideal in X with the ideal projection P on X*, let 2* € X*

and consider the following norm conditions ;

(1.1)
(1.2)
(1.3)

B
I

[Pz™| + [|(T = Pz,
> ||Pz™|| if * # Px*,
= |l=* = Pa7,
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(1.4) ¥ = ||l=* —2Pz*|.

An ideal F is called an M-ideal if the condition (1.1) holds for all
z* € X*. An M-ideal was introduced by Alfsen and Effros [1] in 1972
and has been studied seriously by many authors [5].

Following Hennefeld [6], an ideal F is called an H B-subspace if con-
ditions (1.2) and (1.3) hold for all * € X*. It is easy to see that an HB-
subspace has property U in the sense of Phelps. According to Phelps
[17], a subspace F of a Banach space X is said to have property U in
X if every e* € E* has a unique norm-preserving extension z* € X*. E.
Oja [15] defined property SU which is an intermediate property between
property U and H B-subspace. A subspace E is said to have property SU
in X if F is an ideal in X and the condition (1.2) holds for all z* € X*.

An ideal E is called a u-ideal if condition (1.4) holds. A u-ideal was
introduced by Casazza and Kalton [2].

An ideal is closely linked with a Hahn-Banach extension operator.
For a closed subspace E of a Banach space X a linear operator ¢ :
E* — X* is called a Hahn-Banach extension operator if ¢(e*) is a norm
preserving extension of e* for all ¢* € E*. It is well known that there
exists a Hahn-Banach extension operator ¢ : E* — X* if and only if
E is an ideal in X. In this case, the Hahn-Banach extension operator
¢ and the corresponding ideal projection P : X* — X™* are related by
Pz* = ¢(z*|g), where z*|g is the restriction of z* to E. Therefore, if a
subspace FE is an ideal with property U in X, then the ideal projection
is unique.

Let X and Y be Banach spaces. We denote by £(X,Y’) the space of
all bounded linear operators from X to Y and by K(X,Y) its subspace
of compact operators.

In 1994, Lima, Oja, Rao and Werner [14] proved a sort of hereditary
property of an M-ideal for K(X,Y). More specifically, they proved the
following results.

THEOREM 1.1. Suppose that X** or Y* has the Radon-Nikodym
property and that K(X,Y') is an M-ideal in £L(X,Y).

(a) If X* has the bounded compact approximation property with ad-
Jjoint operators and Z is a closed subspace of Y, then K(X, Z) is
an M-ideal in £(X, Z).

(b) IfY* has the bounded compact approximation property with ad-
joint operators and E is a closed subspace of X, then K(X/E,Y)
is an M-ideal in L(X/E,Y).
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In this paper, we will investigate various ideal properties of K(X, Z)
in £(X,Z) inherited from those of K(X,Y) in L(X,Y) for a closed
subspace Z of Y.

In Theorem 3.3, we will assume that X and Y are Banach spaces
such that either X™* or Y* has the Radon-Nikodym property and show
that if £(X,Y) is an M-ideal (resp. an H B-subspace) in £(X,Y), then
K(X,Z) is an M-ideal (resp. an HB-subspace) in L(X, Z). If K(X,Y)
has property SU in L£(X,Y), then K(X, Z) also has property SU in
L(X,Z). The idea of proofs is using suitable Hahn-Banach extension
operators corresponding to ideal projections and using Feder-Saphar
representation of the dual space of certain space of compact operators
(Theorem 2.1).

In Theorem 3.5 we prove that if X* has the metric compact ap-
proximation property with adjoint operators, then M-ideal (resp. HB-
subspace) property of K(X,Y) in £(X,Y) is inherited to K(X, F) in
L(X,F), where F is a closed subspace of Y. The same properties are
inherited to K(X/E,Y) in L(X/E,Y) if Y has the metric compact ap-
proximation property, where E is a closed subspace of X.

2. Preliminaries

A Banach space X is said to have the compact approxzimation property
if there exists a net (K, ) in K(X) such that K,z — z for all z € X.
If the net (K,) in K(X) above can be chosen to be ||K,f < 1 for all
a, then we say that X has the metric compact approzimation property.
The dual space X* of X is said to have the compact approrimation
property with adjoint operators if there exists a net (K,) in K(X) such
that K} z* — z* for all * € X*. We say that X* has the metric compact
approzimation property with adjoint operators if the net (K,) above can
be taken to be ||K,|| <1 for all a.

Let X®Y be the projective tensor product of Banach spaces X and
Y. If v € X®Y, then there exist sequences () in X and (y,) in Y such
that v = Y77, &y ® Y, and Yooy [|2nllllynll < co. Moreover, |jv| =
nf{>>° , llzn|||lyn|l} with infimum being taken over all representations
V=00 1 Tn QO Yn, Tn € X,y €Y.

Let v = 5°°° o @ 2 € Y*@X* with 320 [y [|[lz3*]] < oo. For
any T € L(X,Y), we define T*v = > >° , v @ T**x}*. Then T"v €
Y*®Y** and the map T — trace(T**v) = Y00 (T**z%")(y;) defines a
bounded linear functional on £(X,Y) with norm no larger than |v||.
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The following theorem is originally due to M. Feder and P. Sapher
[3] and slightly modified by Lima, Nygaard and Oja [9).

THEOREM 2.1. Let X and Y be Banach spaces such that either X™**
or Y* has the Radon-Nikodym property. Let ¥ : Y*@X** — L(X,Y)*
be defined by

(Tv)(T) = trace(T™v)

forall T € L(X,Y) and v € Y*RX**. Then V¥ : Y*@X** — K(X,Y)*
is a quotient map, where 7 : K(X,Y) — L(X,Y) is the inclusion map.
Moreover, for each f € K(X,Y)*, there exists v € Y*®@X** such that
f = (¥0)|k(x,y) and || f|| = [|¥v].

3. Hereditary properties of ideals of compact operators.

Let X and Y be Banach spaces, and let £ C X and F C Y be closed
subspaces. In this section we will investigate various ideal properties of
K(X/E,F) in L(X/E, F) inherited from the corresponding ideal prop-
erties of X(X,Y) in L(X,Y).

Let # : X — X/FE be the canonical projection and i : F — Y
the inclusion mapping. Define I : L(X/E,F) — L(X,Y) and J :
K(X/E,F) - K(X,Y) by I(T) =ioTomwand J(K) =ioKom
for T € L(X/E,F) and K € K(X/E, F), respectively. Then I and J
are isometries into £(X,Y’) and K(X,Y), respectively. By a diagram
chase we can easily check the following Lemma.

LEMMA 3.1. Let X and Y be Banach spaces and let E C X and
F C Y be closed subspaces. If ¢ : K(X,Y)* — L(X,Y)*" is a Hahn-
Banach extension operator and ¢ : K(X/E,F)* — L(X/E,F)* is a
linear operator such that

I"o¢gr =¢goJ"
then ¢9 is a Hahn-Banach extension operator.

PROPOSITION 3.2. Let X and Y be Banach spaces and let E C X
and F C Y be closed subspaces. Suppose that K(X,Y) is an M-ideal
(resp. an H B-subspace, or a u-ideal) in £(X,Y) with an ideal projec-
tion P. If ¢1 : K(X,Y)* — L(X,Y)* is the Hahn-Banach extension
operator associated with P and ¢y : K(X/E,F)* — L(X/E,F)* is a
linear operator such that

I" oy =¢g0J",



Hereditary properties of certain ideals of compact operators 461

then K(X/E, F) is an M-ideal (resp. an H B-subspace, or a u-ideal) in
L(X/E,F). If K(X,Y) has property SU in £(X,Y), then K(X/E, F)
also has property SU in L(X/E, F).

Proof. By Lemma 3.1 ¢2 is a Hahn-Banach extension operator, and
so K(X/E, F)is anideal in L(X/E, F). Let Q be the ideal projection on
L(X/E,F)* induced by ¢3. Then for f € L(X,Y)* and g € L(X/FE, F)*
we have Pf = ¢1(f) and Qg = ¢2(g), where f and g are the restrictions
of fand g to K(X,Y) and K(X/E, F), respectively.

If g € L(X/E, F)*, then there exists f € £(X,Y)* such that ||g|| =
I£], g = I"f, and s0 g = J*[. Therefore, Qg = ba(g) = ¢o(J*f) =
I*é.f = I*PY.

If £(X,Y) is an M-ideal in L(X,Y), then

gl < IFPfL+ |7 f - I"Pf]]
< NPFI+IF—PFI

= |fIl=llgll;
and hence
lgll = PP+ [I°f = T"PF]
1Qgll +1lg — Qgll-

Therefore, (X/E, F) is an M-ideal in L(X/E, F).
If K(X,Y) has property SU in £(X,Y) and g # Qg, then f # Pf
and so
gl = 1A > I1PFI = [T*P £l = 1Qgll.
Therefore, K(X/E, F) has property SU in L(X/E, F).
The inequalities,

gl == 1f = PAI 2 I f = I"Pfll = llg — Qgll
and
L>||f =2Pf|| = |[I"f —2I"Pf| = |lg — 2Qg]||
prove H B-subspaces and a u-ideal cases. O

In the above Proposition the existence of a linear operator ¢o :
K(X/E,F)* — L(X/E,F)* such that I* o ¢1 = ¢ o J* plays a key
role. An interesting question is when such an operator exists. Theorem
3.3 and Theorem 3.5 are cases in which such operators exist.

THEOREM 3.3. Let X andY be Banach spaces such that either X** or
Y* has the Radon-Nikodym property. If K(X,Y) is an M-ideal (resp.
an HB-subspace) in L(X,Y), then for every closed subspace Z of Y
K(X,Z) is an M-ideal (resp. an HB-subspace) in L(X,Z). If K(X,Y)
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has property SU in L(X,Y), then K(X,Z) also has property SU in
L(X, Z) for every closed subspace Z of Y.

Proof. Let Z be a closed subspace of Y. Observe that if Y* has
the Radon-Nikodgm property, then Z* also has the Radon-Nikodym
property. Let ¥ : Z*®X** — L(X,Z)* be defined as in Theorem
2.1. Since K(X,Z)* = Z*®X**/ker ¥, there exists a bounded lin-
ear operator ¢y : K(X,Z)* — L(X,Z)* such that ¥ = ¢, o p, where
p: Z*RX*™ — Z*®X**/ker ¥ is the canonical projection. Then we
have that

Po(z* @ ™) =2*®@z* forall 2™ € X*™ and 2* € Z*.

Let ¢1 : K(X,Y)* — L(X,Y)* be the Hahn-Banach extension oper-
ator corresponding to the ideal projection P on £(X,Y)* with ker P =
K(X,Y)'. By Proposition 3.2, it suffices to show that I* o ¢; = ¢ 0 J*.
Since either X** or Y* has the Radon-Nikodym property, by Theorem
2.1, every f € K(X,Y)* has a representation

f= ey, Y |zl <co, 23t € X*, yr e Y™
7 n

Therefore, it is sufficient to show that for each z** € X™** and y* € Y™,
I* o iy ® 2*) = g 0 J*(y* ® ™).
Since K(X,Y') has property U in £(X,Y), we have
@y @r*)=y* @x™ forallz* € X*™ and y* € Y".
Therefore, we have
Fop(y*@z™) = I'(y*®z™)
— @
= boliy* @ ™)
= ¢p0J(y" @ ™).
O

Since a reflexive Banach space has the Radon-Nikodym property, we
have the following corollary.

COROLLARY 3.4. Let X be a reflexive Banach space and Z a closed
subspace of a Banach space Y. If K(X,Y) is an M-ideal (resp. an
H B-subspace) in L(X,Y), then K(X, Z) is an M-ideal (resp. an HB-
subspace) in L(X,Z). If K(X,Y) has property SU in L(X,Y), then
K(X, Z) also has property SU in L(X, Z).
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In 1979, J. Johnson [7] proved that if X and Y are Banach spaces,
and Y has the metric compact approximation property, then there exists
a Hahn Banach extension operator ¢ : K(X,Y)* — L(X,Y)*. His con-
struction of ¢ easily proves the following Theorem (cf. [14, Proposition
2.9, Corollary 2.10]).

THEOREM 3.5. Let X and Y be Banach spaces. Suppose that K(X,
Y) is an M-ideal (resp. an H B-subspace) in L(X,Y).
(a) If X* has the metric compact approximation property with adjoint
operators, then K(X, F) is an M-ideal (resp. an H B-subspace) in
L(X, F) for every closed subspace F of Y.
(b) IfY has the metric compact approximation property, then K(X/E,
Y') is an M-ideal (resp. an H B-subspace) in L(X/E,Y) for every
closed subspace E of X.

Proof. (a) Let (K,) be a net in K(X) such that [|K,| < 1 for all
a and Klz* — z* for all * € X*. Then, by passing to a subnet
of (K,), which we still denote by (K,), we can define Hahn-Banach
extension operators [14, Lemma 1] ¢; : K(X,Y)* — L(X,Y)* and
o2 K(X,F)" — L(X, F)* by

¢1(I(T) =lim f(T o Ka), [feK(X,Y),TeL(XY)
and
d2(9)(T) = liglg(To K.), ¢geK(X,F)",T e L(X,F).

Then we can easily check that I* o ¢1 = ¢ o J*. Now we appeal to
Proposition 3.2 to finish the proof.

(b) We choose a suitable net (S,) of compact operators on Y such
that ||Sq|} <1 for all @ and S,y — y for all y € Y. we can define Hahn-
Banach extension operators [14, Lemma 1] ¢ : K(X,Y)* — L(X,Y)*
and ¢ : K(X/E,Y)* — L(X/E,Y)* by

W) =lim f(SaoT), [ €KX, V)T € L(X,Y)
and
#2(9)(T) = liéng(Sa oT), g€ K(X/E,Y)",T € L(X/E,Y).

Then I* o ¢; = ¢ o J* and another appeal to Proposition 3.2 finishes
the proof. O
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