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Abstract. In this paper, all rings are commutative with nonzero identity. Let M be an

R-module. A proper submodule N of M is called a classical prime submodule, if for each

m ∈ M and elements a, b ∈ R, abm ∈ N implies that am ∈ N or bm ∈ N . We introduce

the concept of “weakly classical prime submodules” and we will show that this class of

submodules enjoys many properties of weakly 2-absorbing ideals of commutative rings. A

proper submodule N of M is a weakly classical prime submodule if whenever a, b ∈ R and

m ∈ M with 0 ̸= abm ∈ N , then am ∈ N or bm ∈ N .

1. Introduction

Throughout this paper all rings are commutative with nonzero identity and all
modules are considered to be unitary. Several authors have extended the notion of
prime ideal to modules, see, for example [16, 19, 20]. Let M be a module over a
commutative ring R. A proper submodule N of M is called prime if for a ∈ R and
m ∈ M , am ∈ N implies that m ∈ N or a ∈ (N :R M) = {r ∈ R | rM ⊆ N}.
Anderson and Smith [4] said that a proper ideal I of a ring R is weakly prime if
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whenever a, b ∈ R with 0 ̸= ab ∈ I, then a ∈ I or b ∈ I. Weakly prime submodules
were introduced by Ebrahimi Atani and Farzalipour in [17]. A proper submodule N
ofM is called weakly prime if for a ∈ R andm ∈ M with 0 ̸= am ∈ N , eitherm ∈ N
or a ∈ (N :R M). A proper submodule N ofM is called a classical prime submodule,
if for each m ∈ M and a, b ∈ R, abm ∈ N implies that am ∈ N or bm ∈ N . This
notion of classical prime submodules has been extensively studied by Behboodi in
[12, 13] (see also, [14], in which, the notion of classical prime submodules is named
“weakly prime submodules”). For more information on classical prime submodules,
the reader is referred to [5, 6, 15].

The annihilator of M which is denoted by AnnR(M) is (0 :R M). Furthermore,
for every m ∈ M , (0 :R m) is denoted by AnnR(m). When AnnR(M) = 0, M
is called a faithful R-module. An R-module M is called a multiplication module if
every submodule N of M has the form IM for some ideal I of R, see [18]. Note
that, since I ⊆ (N :R M) then N = IM ⊆ (N :R M)M ⊆ N . So that N = (N :R
M)M . Finitely generated faithful multiplication modules are cancellation modules
[24, Corollary to Theorem 9], where an R-module M is defined to be a cancellation
module if IM = JM for ideals I and J of R implies I = J . Let N and K be
submodules of a multiplication R-module M with N = I1M and K = I2M for
some ideals I1 and I2 of R. The product of N and K denoted by NK is defined by
NK = I1I2M . Then by [2, Theorem 3.4], the product of N and K is independent
of presentations of N and K. Moreover, for m,m′ ∈ M , by mm′, we mean the
product of Rm and Rm′. Clearly, NK is a submodule of M and NK ⊆ N ∩ K
(see [2]). Let N be a proper submodule of a nonzero R-module M . Then the M -
radical of N , denoted by M -rad(N), is defined to be the intersection of all prime
submodules of M containing N . If M has no prime submodule containing N , then
we say M -rad(N) = M . It is shown in [18, Theorem 2.12] that if N is a proper
submodule of a multiplication R-module M , then M -rad(N) =

√
(N :R M)M . In

[22], Quartararo et al. said that a commutative ring R is a u-ring provided R has
the property that an ideal contained in a finite union of ideals must be contained in
one of those ideals; and a um-ring is a ring R with the property that an R-module
which is equal to a finite union of submodules must be equal to one of them. They
show that every Bézout ring is a u-ring. Moreover, they proved that every Prüfer
domain is a u-domain. Also, any ring which contains an infinite field as a subring
is a u-ring, [23, Exercise 3.63].

In this paper we introduce the concept of weakly classical prime submodules
and we will show that this class of submodules enjoys many properties of weakly
2-absorbing ideals of commutative rings as in [8]. We like to emphasize that our
study in this paper is inspired by the work as in [4, 7, 8] and [11, Section 3]. We
recall from Badawi [7] that a proper ideal of R is said to be a 2-absorbing ideal of
R if whenever abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. Badawi and Darani in [8]
called a proper ideal I of R a weakly 2-absorbing ideal of R if whenever 0 ̸= abc ∈ I,
then ab ∈ I or ac ∈ I or bc ∈ I. For more information about the theory of 2-
absorbing ideals and its generalizations we refer to [3, 9, 10, 21]. Now we state
our definition of weakly classical prime submodule. A proper submodule N of an
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R-module M is called a weakly classical prime submodule if whenever a, b ∈ R and
m ∈ M with 0 ̸= abm ∈ N , then am ∈ N or bm ∈ N . Clearly, every classical prime
submodule is a weakly classical prime submodule. Among many results in this
paper, it is shown (Theorem 2.17.) that N is a weakly classical prime submodule
of an R-module M if and only if for every ideals I, J of R and m ∈ M with
0 ̸= IJm ⊆ N , either Im ⊆ N or Jm ⊆ N . It is proved (Theorem 2.19.) that if N
is a weakly classical prime submodule of an R-module M that is not classical prime,
then (N :R M)2N = 0. It is shown (Theorem 2.25.) that over a um-ring R, N is a
weakly classical prime submodule of an R-module M if and only if for every ideals
I, J of R and submodule L of M with 0 ̸= IJL ⊆ N , either IL ⊆ N or JL ⊆ N .
Let R = R1 × R2 × R3 be a decomposable ring and M = M1 × M2 × M3 be an
R-module where Mi is an Ri-module, for i = 1, 2, 3. In Theorem 2.38. it is proved
that if N is a weakly classical prime submodule of M , then either N = {(0, 0, 0)}
or N is a classical prime submodule of M . Let R be a um-ring, M be an R-module
and F be a faithfully flat R-module. It is shown (Theorem 2.39.) that N is a weakly
classical prime submodule of M if and only if F ⊗ N is a weakly classical prime
submodule of F ⊗M.

2. Properties of Weakly Classical Prime Submodules

First of all we give a module which has no nonzero weakly classical prime
submodule.

Example 2.1. Let p be a fixed prime integer and N0 = N ∪ {0} . Then

E (p) :=

{
α ∈ Q/Z | α =

r

pn
+ Z for some r ∈ Z and n ∈ N0

}
is a nonzero submodule of the Z-module Q/Z. For each t ∈ N0, set

Gt :=

{
α ∈ Q/Z | α =

r

pt
+ Z for some r ∈ Z

}
.

Notice that for each t ∈ N0, Gt is a submodule of E (p) generated by 1
pt + Z

for each t ∈ N0. Each proper submodule of E (p) is equal to Gi for some i ∈
N0 (see, [23, Example 7.10]) . However, no Gt is a weakly classical prime submodule

of E (p) . Indeed, 1
pt+2 + Z ∈ E (p). Then 0 ̸= p2

(
1

pt+2 + Z
)
= 1

pt + Z ∈ Gt but

p
(

1
pt+2 + Z

)
= 1

pt+1 + Z /∈ Gt.

Theorem 2.2. Let M be an R-module and N a proper submodule of M .

1. If N is a weakly classical prime submodule of M , then (N :R m) is a weakly
prime ideal of R for every m ∈ M\N with AnnR(m) = 0.

2. If (N :R m) is a weakly prime ideal of R for every m ∈ M\N , then N is a
weakly classical prime submodule of M .
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Proof. (1) Suppose that N is a weakly classical prime submodule. Let m ∈ M\N
with AnnR(m) = 0, and 0 ̸= ab ∈ (N :R m) for some a, b ∈ R. Then 0 ̸= abm ∈ N .
So am ∈ N or bm ∈ N . Hence a ∈ (N :R m) or b ∈ (N :R m).

(2) Assume that (N :R m) is a weakly prime ideal of R for every m ∈ M\N .
Let 0 ̸= abm ∈ N for some m ∈ M and a, b ∈ R. If m ∈ N , then we are done. So
we assume that m /∈ N . Hence 0 ̸= ab ∈ (N :R m) implies that either a ∈ (N :R m)
or b ∈ (N :R m). Therefore either am ∈ N or bm ∈ N , and so N is weakly classical
prime. 2

We recall that M is a torsion-free R-module if and only if for every 0 ̸= m ∈ M ,
AnnR(m) = 0. As a direct consequence of Theorem 2.2. the following result follows.

Corollary 2.3. Let M be a torsion-free R-module and N a proper submodule of
M . Then N is a weakly classical prime submodule of M if and only if (N :R m) is
a weakly prime ideal of R for every m ∈ M\N .

Theorem 2.4. Let f : M → M ′ be a homomorphism of R-modules.

1. Suppose that f is a monomorphism. If N ′ is a weakly classical prime sub-
module of M ′ with f−1(N ′) ̸= M , then f−1(N ′) is a weakly classical prime
submodule of M .

2. Suppose that f is an epimorphism. If N is a weakly classical prime submodule
of M containing Ker(f), then f(N) is a weakly classical prime submodule of
M ′.

Proof. (1) Suppose that N ′ is a weakly classical prime submodule of M ′ with
f−1(N ′) ̸= M . Let 0 ̸= abm ∈ f−1(N ′) for some a, b ∈ R and m ∈ M . Since f is a
monomorphism, 0 ̸= f (abm) ∈ N ′. So we get 0 ̸= abf(m) ∈ N ′. Hence f(am) =
af(m) ∈ N ′ or f(bm) = bf(m) ∈ N ′. Thus am ∈ f−1(N ′) or bm ∈ f−1(N ′).
Therefore f−1(N ′) is a weakly classical prime submodule of M .

(2) Assume that N is a weakly classical prime submodule of M . Let a, b ∈ R
and m′ ∈ M ′ be such that 0 ̸= abm′ ∈ f(N). By assumption there exists m ∈ M
such that m′ = f(m) and so f(abm) ∈ f(N). Since Ker(f) ⊆ N , we have 0 ̸=
abm ∈ N . It implies that am ∈ N or bm ∈ N . Hence am′ ∈ f(N) or bm′ ∈ f(N).
Consequently f(N) is a weakly classical prime submodule of M ′. 2

As an immediate consequence of Theorem 2.4.(2) we have the following corol-
lary.

Corollary 2.5. Let M be an R-module and L ⊂ N be submodules of M . If N
is a weakly classical prime submodule of M , then N/L is a weakly classical prime
submodule of M/L.

Theorem 2.6. Let K and N be submodules of M with K ⊂ N ⊂ M . If K
is a weakly classical prime submodule of M and N/K is a weakly classical prime
submodule of M/K, then N is a weakly classical prime submodule of M .
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Proof. Let a, b ∈ R, m ∈ M and 0 ̸= abm ∈ N . If abm ∈ K, then am ∈ K ⊂ N or
bm ∈ K ⊂ N as it is needed. Thus, assume that abm ̸∈ K. Then 0 ̸= ab(m+K) ∈
N/K, and so a(m + K) ∈ N/K or b(m + K) ∈ N/K. It means that am ∈ N or
bm ∈ N , which completes the proof. 2

For an R-module M , the set of zero-divisors of M is denoted by ZR(M).

Theorem 2.7. Let M be an R-module, N be a submodule of M and S be a
multiplicative subset of R.

1. If N is a weakly classical prime submodule of M such that (N :R M)∩S = ∅,
then S−1N is a weakly classical prime submodule of S−1M .

2. If S−1N is a weakly classical prime submodule of S−1M such that S ∩
ZR(N) = ∅ and S ∩ ZR(M/N) = ∅, then N is a weakly classical prime
submodule of M .

Proof. (1) Let N be a weakly classical prime submodule ofM and (N :R M)∩S = ∅.
Suppose that 0 ̸= a1

s1
a2

s2
m
s3

∈ S−1N for some a1, a2 ∈ R, s1, s2, s3 ∈ S and m ∈ M .
Then there exists s ∈ S such that sa1a2m ∈ N . If sa1a2m = 0, then a1

s1
a2

s2
m
s3

=
sa1a2m
ss1s2s3

= 0
1 , a contradiction. Since N is a weakly classical prime submodule, then

we have a1 (sm) ∈ N or a2 (sm) ∈ N . Thus a1

s1
m
s3

= sa1m
ss1s3

∈ S−1N or a2

s2
m
s3

= sa2m
ss2s3

∈
S−1N . Consequently S−1N is a weakly classical prime submodule of S−1M .

(2) Suppose that S−1N is a weakly classical prime submodule of S−1M and
S ∩ ZR(N) = ∅ and S ∩ ZR(M/N) = ∅. Let a, b ∈ R and m ∈ M such that
0 ̸= abm ∈ N . Then a

1
b
1
m
1 ∈ S−1N . If a

1
b
1
m
1 = 0

1 , then there exists s ∈ S such that

sabm = 0 which contradicts S ∩ ZR(N) = ∅. Therefore a
1
b
1
m
1 ̸= 0

1 , and so either
a
1
m
1 ∈ S−1N or b

1
m
1 ∈ S−1N . We may assume that a

1
m
1 ∈ S−1N . So there exists

u ∈ S such that uam ∈ N . But S ∩ZR(M/N) = ∅, whence am ∈ N . Consequently
N is a weakly classical prime submodule of M . 2

Following the notion of (weakly) 2-absorbing ideals of commutative rings (as in
[7] and [8]), Darani [25] generalized the concept of prime submodules (resp. weakly
prime submodules) of a module over a commutative ring as following: Let N be a
proper submodule of an R-moduleM . Then N is said to be a 2-absorbing submodule
(resp. weakly 2-absorbing submodule) of M if whenever a, b ∈ R and m ∈ M with
abm ∈ N (resp. 0 ̸= abm ∈ N), then am ∈ N or bm ∈ N or ab ∈ (N :R M).

Proposition 2.8. Let N be a proper submodule of an R-module M .

1. If N is a weakly prime submodule of M , then N is a weakly classical prime
submodule of M .

2. If N is a weakly classical prime submodule of M , then N is a weakly 2-
absorbing submodule of M . The converse holds if in addition (N :R M) is a
weakly prime ideal of R.
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Proof. (1) Assume that N is a weakly prime submodule of M . Let a, b ∈ R and
m ∈ M such that 0 ̸= abm ∈ N . Therefore either bm ∈ N or a ∈ (N :R M).
The first case leads us to the claim. In the second case we have that am ∈ N .
Consequently N is a weakly classical prime submodule.

(2) It is evident that if N is weakly classical prime, then it is weakly 2-absorbing.
Assume that N is a weakly 2-absorbing submodule of M and (N :R M) is a weakly
prime ideal of R. Let 0 ̸= abm ∈ N for some a, b ∈ R and m ∈ M such that neither
am ∈ N nor bm ∈ N . Then 0 ̸= ab ∈ (N :R M) and so either a ∈ (N :R M) or
b ∈ (N :R M). This contradiction shows that N is weakly classical prime. 2

The following example shows that the converse of Proposition 2.8.(1) is not
true.

Example 2.9. Let R = Z and M = Zp

⊕
Z
⊕

Z where p is a prime integer. Con-
sider the submodule N = {0}

⊕
{0}

⊕
Z of M . Notice that (0, 0, 0) ̸= p(1, 0, 1) =

(0, 0, p) ∈ N , but (1, 0, 1) /∈ N . Also p(1, 1, 1) /∈ N which shows that p /∈ (N :Z M).
Therefore N is not a weakly prime submodule of M . Now, we show that N is a
weakly classical prime submodule of M . Let m,n, z, w ∈ Z and x ∈ Zp be such that
(0, 0, 0) ̸= mn(x, z, w) ∈ N . Hence mnx = 0 and mnz = 0. Therefore p|mnx and
z = 0. So p|m or p|nx. If p|m, then m(x, z, w) = (mx, 0,mw) = (0, 0,mw) ∈ N .
Similarly, if p|nx, then n(x, z, w) = (nx, 0, nw) = (0, 0, nw) ∈ N . Consequently N
is a weakly classical prime submodule of M .

Proposition 2.10. Let M be a cyclic R-module. Then a proper submodule N of M
is a weakly prime submodule if and only if it is a weakly classical prime submodule.

Proof. By Proposition 2.8.(1), the “only if” part holds. Let M = Rm for some m ∈
M and N be a weakly classical prime submodule of M . Suppose that 0 ̸= rx ∈ N
for some r ∈ R and x ∈ M . Then there exists an element s ∈ R such that x = sm.
Therefore 0 ̸= rx = rsm ∈ N and since N is a weakly classical prime submodule,
rm ∈ N or sm ∈ N . Hence r ∈ (N :R M) or x ∈ N . Consequently N is a weakly
prime submodule. 2

Example 2.11. Let R = Z and M = Zp

⊕
Zq

⊕
Q where p, q are two distinct

prime integers. One can easily see that the zero submodule of M is a weakly classi-
cal prime submodule. Notice that pq(1, 1, 0) = (0, 0, 0), but p(1, 1, 0) ̸= (0, 0, 0) and
q(1, 1, 0) ̸= (0, 0, 0). So the zero submodule of M is not classical prime. Hence the
two concepts of classical prime submodules and of weakly classical prime submod-
ules are different in general.

The following definition is an analogue of [8, Page 3] and [11, Definition 3.8].

Definition 2.12. Let N be a proper submodule of M and a, b ∈ R, m ∈ M. If N is
a weakly classical prime submodule and abm = 0, am /∈ N , bm /∈ N , then (a, b,m)
is called a classical triple-zero of N .

The following result and its proof are analogues of [11, Lemma 3.10].
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Theorem 2.13. Let N be a weakly classical prime submodule of an R-module
M and suppose that abK ⊆ N for some a, b ∈ R and some submodule K of M .
If (a, b, k) is not a classical triple-zero of N for every k ∈ K, then aK ⊆ N or
bK ⊆ N .

Proof. Suppose that (a, b, k) is not a classical triple-zero of N for every k ∈ K.
Assume on the contrary that aK ̸⊆ N and bK ̸⊆ N . Then there are k1, k2 ∈ K
such that ak1 ̸∈ N and bk2 ̸∈ N . If abk1 ̸= 0, then we have bk1 ∈ N , because
ak1 ̸∈ N and N is a weakly classical prime submodule of M . If abk1 = 0, then since
ak1 /∈ N and (a, b, k1) is not a classical triple-zero of N , we conclude again that
bk1 ∈ N . By a similar argument, since (a, b, k2) is not a classical triple-zero and
bk2 /∈ N , then we deduce that ak2 ∈ N . From our hypothesis, ab(k1 + k2) ∈ N and
(a, b, k1+k2) is not a classical triple-zero of N . Hence we have either a(k1+k2) ∈ N
or b(k1 + k2) ∈ N . If a(k1 + k2) = ak1 + ak2 ∈ N , then since ak2 ∈ N , we have
ak1 ∈ N , a contradiction. If b(k1 + k2) = bk1 + bk2 ∈ N , then since bk1 ∈ N , we
have bk2 ∈ N , which again is a contradiction. Thus aK ⊆ N or bK ⊆ N . 2

The following definition is an analogue of [11, Definition 3.9].

Definition 2.14. Let N be a weakly classical prime submodule of an R-module
M and suppose that IJK ⊆ N for some ideals I, J of R and some submodule K
of M . We say that N is a free classical triple-zero with respect to IJK if (a, b, k) is
not a classical triple-zero of N for every a ∈ I, b ∈ J , and k ∈ K.

Remark 2.15. Let N be a weakly classical prime submodule of M and suppose
that IJK ⊆ N for some ideals I, J of R and some submodule K of M such that N
is a free classical triple-zero with respect to IJK. Hence if a ∈ I, b ∈ J , and k ∈ K,
then ak ∈ N or bk ∈ N .

The following result is an analogue of [11, Theorem 3.11].

Corollary 2.16. Let N be a weakly classical prime submodule of an R-module M
and suppose that IJK ⊆ N for some ideals I, J of R and some submodule K of M .
If N is a free classical triple-zero with respect to IJK, then IK ⊆ N or JK ⊆ N .

Proof. Suppose that N is a free classical triple-zero with respect to IJK. Assume
that IK ̸⊆ N and JK ̸⊆ N . Then there are a ∈ I and b ∈ J with aK ̸⊆ N and
bK ̸⊆ N . Since abK ⊆ N and N is free classical triple-zero with respect to IJK,
then Theorem 2.13. implies that aK ⊆ N and bK ⊆ N which is a contradiction.
Consequently IK ⊆ N or JK ⊆ N . 2

Let M be an R-module and N a submodule of M . For every a ∈ R, {m ∈ M |
am ∈ N} is denoted by (N :M a). It is easy to see that (N :M a) is a submodule of
M containing N .

In the next theorem we characterize weakly classical prime submodules.

Theorem 2.17. Let M be an R-module and N be a proper submodule of M . The
following conditions are equivalent:

1. N is weakly classical prime;
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2. For every a, b ∈ R, (N :M ab) = (0 :M ab) ∪ (N :M a) ∪ (N :M b);

3. For every a ∈ R and m ∈ M with am /∈ N , (N :R am) = (0 :R am) ∪ (N :R
m);

4. For every a ∈ R and m ∈ M with am /∈ N , (N :R am) = (0 :R am) or
(N :R am) = (N :R m);

5. For every a ∈ R and every ideal I of R and m ∈ M with 0 ̸= aIm ⊆ N ,
either am ∈ N or Im ⊆ N ;

6. For every ideal I of R and m ∈ M with Im * N , (N :R Im) = (0 :R Im) or
(N :R Im) = (N :R m);

7. For every ideals I, J of R and m ∈ M with 0 ̸= IJm ⊆ N , either Im ⊆ N
or Jm ⊆ N .

Proof. (1)⇒(2) Suppose that N is a weakly classical prime submodule of M . Let
m ∈ (N :M ab). Then abm ∈ N . If abm = 0, then m ∈ (0 :M ab). Assume that
abm ̸= 0. Hence am ∈ N or bm ∈ N . Therefore m ∈ (N :M a) or m ∈ (N :M b).
Consequently, (N :M ab) = (0 :M ab) ∪ (N :M a) ∪ (N :M b).
(2)⇒(3) Let am /∈ N for some a ∈ R and m ∈ M . Assume that x ∈ (N :R am).
Then axm ∈ N , and so m ∈ (N :M ax). Since am /∈ N , then m /∈ (N :M a).
Thus by part (2), m ∈ (0 :M ax) or m ∈ (N :M x), whence x ∈ (0 :R am) or
x ∈ (N :R m). Therefore (N :R am) = (0 :R am) ∪ (N :R m).
(3)⇒(4) By the fact that if an ideal (a subgroup) is the union of two ideals (two
subgroups), then it is equal to one of them.
(4)⇒(5) Let for some a ∈ R, an ideal I of R and m ∈ M , 0 ̸= aIm ⊆ N . Hence
I ⊆ (N :R am) and I * (0 :R am). If am ∈ N , then we are done. So, assume that
am /∈ N . Therefore by part (4) we have that I ⊆ (N :R m), i.e., Im ⊆ N .
(5)⇒(6)⇒(7) Have proofs similar to that of the previous implications.
(7)⇒(1) Is trivial. 2

An analogue of [8, Theorem 2.3] is the following result.

Theorem 2.18. Let N be a weakly classical prime submodule of M and suppose
that (a, b,m) is a classical triple-zero of N for some a, b ∈ R and m ∈ M . Then

1. abN = 0.

2. a(N :R M)m = 0.

3. b(N :R M)m = 0.

4. (N :R M)2m = 0.

5. a(N :R M)N = 0.

6. b(N :R M)N = 0.



Weakly Classical Prime Submodules 1093

Proof. (1) Suppose that abN ̸= 0. Then there exists n ∈ N with abn ̸= 0. Hence
0 ̸= ab(m + n) = abn ∈ N , so we conclude that a(m + n) ∈ N or b(m + n) ∈ N .
Thus am ∈ N or bm ∈ N , which contradicts the assumption that (a, b,m) is classical
triple-zero. Thus abN = 0.

(2) Let axm ̸= 0 for some x ∈ (N :R M). Then a(b+x)m ̸= 0, because abm = 0.
Since xm ∈ N , a(b+ x)m ∈ N . Then am ∈ N or (b+ x)m ∈ N . Hence am ∈ N or
bm ∈ N , which contradicts our hypothesis.

(3) The proof is similar to part (2).
(4) Assume that x1x2m ̸= 0 for some x1, x2 ∈ (N :R M). Then by parts (2)

and (3), (a + x1)(b + x2)m = x1x2m ̸= 0. Clearly (a + x1)(b + x2)m ∈ N . Then
(a + x1)m ∈ N or (b + x2)m ∈ N . Therefore am ∈ N or bm ∈ N which is a
contradiction. Consequently (N :R M)2m = 0.

(5) Let axn ̸= 0 for some x ∈ (N :R M) and n ∈ N . Therefore by parts (1)
and (2) we conclude that 0 ̸= a(b + x)(m + n) = axn ∈ N . So a(m + n) ∈ N or
(b + x)(m + n) ∈ N . Hence am ∈ N or bm ∈ N . This contradiction shows that
a(N :R M)N = 0.

(6) Similart to part (5). 2

A submodule N of an R-module M is called a nilpotent submodule if (N :R
M)kN = 0 for some positive integer k (see [1]), and we say that m ∈ M is nilpotent
if Rm is a nilpotent submodule of M .

Theorem 2.19. If N is a weakly classical prime submodule of an R-module M
that is not classical prime, then (N :R M)2N = 0 and so N is nilpotent.

Proof. Suppose that N is a weakly classical prime submodule of M that is not
classical prime. Then there exists a classical triple-zero (a, b,m) of N for some a, b ∈
R and m ∈ M . Assume that (N :R M)2N ̸= 0. Hence there are x1, x2 ∈ (N :R M)
and n ∈ N such that x1x2n ̸= 0. By Theorem 2.18. 0 ̸= (a+ x1)(b+ x2)(m+ n) =
x1x2n ∈ N . So (a + x1)(m + n) ∈ N or (b + x1)(m + n) ∈ N . Therefore am ∈ N
or bm ∈ N , a contradiction. 2

Remark 2.20. Let M be a multiplication R-module and K,L be submodules
of M . Then there are ideals I, J of R such that K = IM and L = JM . Thus
KL = IJM = IL. In particular KM = IM = K. Also, for any m ∈ M we define
Km := KRm. Hence Km = IRm = Im.

The following corollary is an analogue of [8, Theorem 2.4].

Corollary 2.21. If N is a weakly classical prime submodule of a multiplication
R-module M that is not classical prime, then N3 = 0.

Proof. Since M is multiplication, then N = (N :R M)M . Therefore by Theorem
2.19. and Remark 2.20. N3 = (N :R M)2N = 0. 2

Assume that Nil(M) is the set of nilpotent elements of M . If M is faith-
ful, then Nil(M) is a submodule of M and if M is faithful multiplication, then
Nil(M) = Nil(R)M =

∩
Q (= M -rad({0})), where the intersection runs over all

prime submodules of M , [1, Theorem 6].
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Theorem 2.22. Let N be a weakly classical prime submodule of M . If N is not
classical prime, then

1.
√

(N :R M) =
√
AnnR(M).

2. If M is multiplication, then M -rad(N)=M -rad({0}). If in addition M is
faithful, then M -rad(N) = Nil(M).

Proof. (1) Assume that N is not classical prime. By Theorem 2.19. (N :R M)2N =
0. Then

(N :R M)3 = (N :R M)2(N :R M)

⊆ ((N :R M)2N :R M)

= (0 :R M),

and so (N :R M) ⊆
√
(0 :R M). Hence, we have

√
(N :R M) =

√
(0 :R M) =√

AnnR(M).

(2) By part (1), M -rad(N) =
√
(N :R M)M =

√
(0 :R M)M = M -rad({0}) =

Nil(M). 2

Corollary 2.23. Let R be a ring and I be a proper ideal of R.

1. RI is a weakly classical prime submodule of RR if and only if I is a weakly
prime ideal of R.

2. Every proper ideal of R is weakly prime if and only if for every R-module M
and every proper submodule N of M , N is a weakly classical prime submodule
of M .

Proof. (1) Let RI be a weakly classical prime submodule of RR. Then by Theorem
2.2.(1), (I :R 1) = I is a weakly prime ideal of R. For the converse, notice that RI
is a weakly prime submodule of RR if and only if I is a weakly prime ideal of R.
Now, apply part (1) of Proposition 2.8.

(2) Assume that every proper ideal of R is weakly prime. Let N be a proper
submodule of an R-module M . Since for every m ∈ M\N , (N :R m) is a proper
ideal of R, then it is a weakly prime ideal of R. Hence by Theorem 2.2.(2), N is a
weakly classical prime submodule of M . We have the converse immediately by part
(1). 2

Regarding Remark 2.20. we have the next proposition.

Proposition 2.24. Let M be a multiplication R-module and N be a proper sub-
module of M . The following conditions are equivalent:

1. N is a weakly classical prime submodule of M ;

2. If 0 ̸= N1N2m ⊆ N for some submodules N1, N2 of M and m ∈ M , then
either N1m ⊆ N or N2m ⊆ N .
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Proof. (1)⇒(2) Let 0 ̸= N1N2m ⊆ N for some submodules N1, N2 of M and
m ∈ M . Since M is multiplication, there are ideals I1, I2 of R such that N1 = I1M
and N2 = I2M . Therefore 0 ̸= N1N2m = I1I2m ⊆ N , and so either I1m ⊆ N or
I2m ⊆ N . Hence N1m ⊆ N or N2m ⊆ N .
(2)⇒(1) Suppose that 0 ̸= I1I2m ⊆ N for some ideals I1, I2 of R and some m ∈ M .
It is sufficient to set N1 := I1M and N2 := I2M in part (2). 2

Theorem 2.25. Let R be a um-ring, M be an R-module and N be a proper
submodule of M . The following conditions are equivalent:

1. N is weakly classical prime;

2. For every a, b ∈ R, (N :M ab) = (0 :M ab) or (N :M ab) = (N :M a) or
(N :M ab) = (N :M b);

3. For every a, b ∈ R and every submodule L of M , 0 ̸= abL ⊆ N implies that
aL ⊆ N or bL ⊆ N ;

4. For every a ∈ R and every submodule L of M with aL * N , (N :R aL) =
(0 :R aL) or (N :R aL) = (N :R L);

5. For every a ∈ R, every ideal I of R and every submodule L of M , 0 ̸= aIL ⊆
N implies that aL ⊆ N or IL ⊆ N ;

6. For every ideal I of R and every submodule L of M with IL * N , (N :R
IL) = (0 :R IL) or (N :R IL) = (N :R L);

7. For every ideals I, J of R and every submodule L of M , 0 ̸= IJL ⊆ N
implies that IL ⊆ N or JL ⊆ N .

Proof. Similar to that of Theorem 2.17. 2

Remark 2.26. The zero submodule of the Z-module Z4, is a weakly classical prime
submodule (weakly prime ideal) of Z4, but (0 :Z Z4) = 4Z is not a weakly prime
ideal of Z.

Proposition 2.27. Let R be a um-ring, M be an R-module and N be a proper
submodule of M . If N is a weakly classical prime submodule of M , then (N :R L) is
a weakly prime ideal of R for every faithful submodule L of M that is not contained
in N .

Proof. Assume thatN is a weakly classical prime submodule ofM and L is a faithful
submodule of M such that L * N . Let 0 ̸= ab ∈ (N :R L) for some a, b ∈ R. Then
0 ̸= abL ⊆ N , because L is faithful. Hence Theorem 2.25. implies that aL ⊆ N or
bL ⊆ N , i.e., a ∈ (N :R L) or b ∈ (N :R L). Consequently (N :R L) is a weakly
prime ideal of R. 2

Proposition 2.28. Let M be an R-module and N be a weakly classical prime
submodule of M .Then
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1. For every a, b ∈ R and m ∈ M , (N :R abm) = (0 :R abm)∪(N :R am)∪(N :R
bm);

2. If R is a u-ring, then for every a, b ∈ R and m ∈ M , (N :R abm) = (0 :R abm)
or (N :R abm) = (N :R am) or (N :R abm) = (N :R bm).

Proof. (1) Let a, b ∈ R and m ∈ M . Suppose that r ∈ (N :R abm). Then
ab(rm) ∈ N . If ab(rm) = 0, then r ∈ (0 :R abm). Therefore we assume that
ab(rm) ̸= 0. So, either a(rm) ∈ N or b(rm) ∈ N . Thus, either r ∈ (N :R am) or
r ∈ (N :R bm). Consequently (N :R abm) = (0 :R abm) ∪ (N :R am) ∪ (N :R bm).

(2) Apply part (1). 2

Theorem 2.29. Let R be a um-ring, M be a faithful multiplication R-module and
N be a proper submodule of M . The following conditions are equivalent:

1. N is a weakly classical prime submodule of M ;

2. If 0 ̸= N1N2N3 ⊆ N for some submodules N1, N2, N3 of M , then either
N1N3 ⊆ N or N2N3 ⊆ N ;

3. If 0 ̸= N1N2 ⊆ N for some submodules N1, N2 of M , then either N1 ⊆ N or
N2 ⊆ N ;

4. N is a weakly prime submodule of M ;

5. (N :R M) is a weakly prime ideal of R.

Proof. (1)⇒(2) Let 0 ̸= N1N2N3 ⊆ N for some submodules N1, N2, N3 of M . Since
M is multiplication, there are ideals I1, I2 of R such that N1 = I1M and N2 = I2M .
Therefore 0 ̸= I1I2N3 ⊆ N , and so by Theorem 2.25. I1N3 ⊆ N or I2N3 ⊆ N .
Thus, either N1N3 ⊆ N or N2N3 ⊆ N .
(2)⇒(3) Is easy.
(3)⇒(4) Suppose that 0 ̸= IK ⊆ N for some ideal I of R and some submodule K
of M . It is sufficient to set N1 := IM and N2 = K in part (3).
(4)⇒(1) By part (1) of Proposition 2.8.
(1)⇒(5) By Proposition 2.27.
(5)⇒(4) Let 0 ̸= IK ⊆ N for some ideal I of R and some submodule K of M .
Since M is multiplication, then there is an ideal J of R such that K = JM . Hence
0 ̸= IJ ⊆ (N :R M) which implies that either I ⊆ (N :R M) or J ⊆ (N :R M).
If I ⊆ (N :R M), then we are done. So, suppose that J ⊆ (N :R M). Thus
K = JM ⊆ N . 2

Proposition 2.30. Let R be a um-ring. Let M be a finitely generated faithful
multiplication R-module and N a submodule of M. Then the following conditions
are equivalent:

1. N is a weakly classical prime submodule;

2. (N :R M) is a weakly prime ideal of R;
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3. N = IM for some weakly prime ideal I of R.

Proof. (1) ⇔ (2) . By Theorem 2.29.
(2) ⇒ (3) Since (N :R M) is a weakly prime ideal and N = (N :R M)M, then
condition (3) holds.
(3) ⇒ (2) Suppose that N = IM for some weakly prime ideal I of R. Since M is a
multiplication module, we have N = (N : M)M. Therefore N = IM = (N : M)M
and so I = (N : M), because by [24, Corollary to Theorem 9] M is cancellation.

2

Theorem 2.31. Let M1,M2 be R-modules and N1 be a proper submodule of M1.
Then the following conditions are equivalent:

1. N = N1 ×M2 is a weakly classical prime submodule of M = M1 ×M2;

2. N1 is a weakly classical prime submodule of M1 and for each r, s ∈ R and
m1 ∈ M1 we have

rsm1 = 0, rm1 /∈ N1, sm1 /∈ N1 ⇒ rs ∈ AnnR(M2).

Proof. (1)⇒(2) Suppose that N = N1 ×M2 is a weakly classical prime submodule
of M = M1 ×M2. Let r, s ∈ R and m1 ∈ M1 be such that 0 ̸= rsm1 ∈ N1. Then
(0, 0) ̸= rs(m1, 0) ∈ N . Thus r(m1, 0) ∈ N or s(m1, 0) ∈ N , and so rm1 ∈ N1 or
sm1 ∈ N1. Consequently N1 is a weakly classical prime submodule of M1. Now,
assume that rsm1 = 0 for some r, s ∈ R and m1 ∈ M1 such that rm1 /∈ N1

and sm1 /∈ N1. Suppose that rs /∈ AnnR(M2). Therefore there exists m2 ∈ M2

such that rsm2 ̸= 0. Hence (0, 0) ̸= rs(m1,m2) ∈ N , and so r(m1,m2) ∈ N or
s(m1,m2) ∈ N . Thus rm1 ∈ N1 or sm1 ∈ N1 which is a contradiction. Conse-
quently rs ∈ AnnR(M2).
(2)⇒(1) Let r, s ∈ R and (m1,m2) ∈ M = M1 × M2 be such that (0, 0) ̸=
rs(m1,m2) ∈ N = N1 × M2. First assume that rsm1 ̸= 0. Then by part (2),
rm1 ∈ N1 or sm1 ∈ N1. So r(m1,m2) ∈ N or s(m1,m2) ∈ N , and thus we are
done. If rsm1 = 0, then rsm2 ̸= 0. Therefore rs /∈ AnnR(M2), and so part (2)
implies that either rm1 ∈ N1 or sm1 ∈ N1. Again we have that r(m1,m2) ∈ N or
s(m1,m2) ∈ N which shows N is a weakly classical prime submodule of M .

The following two propositions have easy verifications.

Proposition 2.32. Let M1,M2 be R-modules and N1 be a proper submodule of
M1. Then N = N1 ×M2 is a classical prime submodule of M = M1 ×M2 if and
only if N1 is a classical prime submodule of M1.

Proposition 2.33. Let M1,M2 be R-modules and N1, N2 be proper submodules of
M1,M2, respectively. If N = N1 × N2 is a weakly classical prime (resp. classical
prime) submodule of M = M1 × M2, then N1 is a weakly classical prime (resp.
classical prime) submodule of M1 and N2 is a weakly classical prime (resp. classical
prime) submodule of M2.
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Example 2.34. Let R = Z, M = Z × Z and N = pZ × qZ where p, q are two
distinct prime integers. Since pZ, qZ are prime ideals of Z, then pZ, qZ are weakly
classical prime Z-submodules of Z. Notice that (0, 0) ̸= pq(1, 1) = (pq, pq) ∈ N , but
neither p(1, 1) ∈ N nor q(1, 1) ∈ N . So N is not a weakly classical prime submodule
of M . This example shows that the converse of Proposition 2.33. is not true.

LetRi be a commutative ring with identity andMi be anRi-module, for i = 1, 2.
Let R = R1 ×R2. Then M = M1 ×M2 is an R-module and each submodule of M
is in the form of N = N1 ×N2 for some submodules N1 of M1 and N2 of M2.

Theorem 2.35. Let R = R1 × R2 be a decomposable ring and M = M1 ×M2 be
an R-module where M1 is an R1-module and M2 is an R2-module. Suppose that
N = N1 × M2 is a proper submodule of M . Then the following conditions are
equivalent:

1. N1 is a classical prime submodule of M1;

2. N is a classical prime submodule of M ;

3. N is a weakly classical prime submodule of M .

Proof. (1)⇒(2) Let (a1, a2)(b1, b2)(m1,m2) ∈ N for some (a1, a2), (b1, b2) ∈ R and
(m1,m2) ∈ M . Then a1b1m1 ∈ N1 so either a1m1 ∈ N1 or b1m1 ∈ N1 which shows
that either (a1, a2)(m1,m2) ∈ N or (b1, b2)(m1,m2) ∈ N . Consequently N is a
classical prime submodule of M .
(2)⇒(3) It is clear that every classical prime submodule is a weakly classical prime
submodule.
(3)⇒(1) Let abm ∈ N1 for some a, b ∈ R1 and m ∈ M1. We may assume that
0 ̸= m′ ∈ M2. Therefore 0 ̸= (a, 1)(b, 1)(m,m′) ∈ N . So either (a, 1)(m,m′) ∈ N or
(b, 1)(m,m′) ∈ N . Therefore am ∈ N1 or bm ∈ N1. Hence N1 is a classical prime
submodule of M1. 2

Proposition 2.36. Let R = R1 × R2 be a decomposable ring and M = M1 ×M2

be an R-module where M1 is an R1-module and M2 is an R2-module. Suppose that
N1, N2 are proper submodules of M1,M2, respectively. If N = N1 ×N2 is a weakly
classical prime submodule of M , then N1 is a weakly prime submodule of M1 and
N2 is a weakly prime submodule of M2.

Proof. Suppose that N = N1 ×N2 is a weakly classical prime submodule of M . By
hypothesis, there exist x ∈ M1\N1 and y ∈ M2\N2. First we show that N1 is a
weakly prime submodule of M1. Let 0 ̸= am1 ∈ N1 for some a ∈ R1 and m1 ∈ M1.
Then 0 ̸= (1, 0) (a, 1) (m1, y) ∈ N1 × N2 = N . Notice that if (a, 1) (m1, y) ∈
N1 × N2 = N , then y ∈ N2 which is a contradiction. So we get (1, 0) (m1, y) ∈
N1 × N2 = N . Thus m1 ∈ N1. Hence N1 is a weakly prime submodule of M1. A
similar argument shows that N2 is a weakly prime submodule of M2. 2

The following example shows that the converse of Proposition 2.36. is not true
in general.
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Example 2.37. Let R = M = Z×Z and N = pZ× qZ where p, q are two distinct
prime integers. Since pZ, qZ are prime ideals of Z, then pZ, qZ are weakly prime
(weakly classical prime) Z-submodules of Z. Notice that (0, 0) ̸= (p, 1)(1, q)(1, 1) =
(p, q) ∈ N , but neither (p, 1)(1, 1) ∈ N nor (1, q)(1, 1) ∈ N . So N is not a weakly
classical prime submodule of M .

Theorem 2.38. Let R = R1 × R2 × R3 be a decomposable ring and M = M1 ×
M2 × M3 be an R-module where M1 is an R1-module, M2 is an R2-module and
M3 is an R3-module. If N is a weakly classical prime submodule of M , then either
N = {(0, 0, 0)} or N is a classical prime submodule of M .

Proof. Since {(0, 0, 0)} is a weakly classical prime submodule in any module,
we may assume that N = N1 × N2 × N3 ̸= {(0, 0, 0)}. We assume that N
is not a classical prime submodule of M and reach a contradiction. With-
out loss of generality we may assume that N1 ̸= 0 and so there is 0 ̸=
n ∈ N1. We claim that N2 = M2 or N3 = M3. Suppose that there are
m2 ∈ M2\N2 and m3 ∈ M3\N3. Get r ∈ (N2 :R2 M2) and s ∈ (N3 :R3

M3). Since (0, 0, 0) ̸= (1, r, 1)(1, 1, s)(n,m2,m3) = (n, rm2, sm3) ∈ N , then
(1, r, 1)(n,m2,m3) = (n, rm2,m3) ∈ N or (1, 1, s)(n,m2,m3) = (n,m2, sm3) ∈ N .
Therefore either m3 ∈ N3 or m2 ∈ N2, a contradiction. Hence N = N1 ×M2 ×N3

or N = N1 × N2 × M3. Let N = N1 × M2 × N3. Then (0, 1, 0) ∈ (N :R M).
Clearly (0, 1, 0)2N ̸= {(0, 0, 0)}. So (N :R M)2N ̸= {(0, 0, 0)} which is a contra-
diction, by Theorem 2.19. In the case when N = N1 × N2 × M3 we have that
(0, 0, 1) ∈ (N :R M) and similar to the previous case we reach a contradiction. 2

Theorem 2.39. Let R be a um-ring and M be an R-module.

1. If F is a flat R-module and N is a weakly classical prime submodule of M
such that F ⊗N ̸= F ⊗M, then F ⊗N is a weakly classical prime submodule
of F ⊗M.

2. Suppose that F is a faithfully flat R-module. Then N is a weakly classi-
cal prime submodule of M if and only if F ⊗ N is a weakly classical prime
submodule of F ⊗M.

Proof. (1) Let a, b ∈ R. Then by Theorem 2.25. either (N :M ab) = (0 :M ab)
or (N :M ab) = (N :M a) or (N :M ab) = (N :M b). Assume that (N :M ab) =
(0 :M ab). Then by [6, Lemma 3.2],

(F ⊗N :F⊗M ab) = F ⊗ (N :M ab) = F ⊗ (0 :M ab)

= (F ⊗ 0 :F⊗M ab) = (0 :F⊗M ab) .

Now, suppose that (N :M ab) = (N :M a). Again by [6, Lemma 3.2],

(F ⊗N :F⊗M ab) = F ⊗ (N :M ab) = F ⊗ (N :M a)

= (F ⊗N :F⊗M a) .
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Similarly, we can show that if (N :M ab) = (N :M b), then
(F ⊗N :F⊗M ab) = (F ⊗N :F⊗M b) . Consequently by Theorem 2.25. we deduce
that F ⊗N is a weakly classical prime submodule of F ⊗M.

(2) Let N be a weakly classical prime submodule of M and assume that

F ⊗ N = F ⊗ M . Then 0 → F ⊗ N
⊆→ F ⊗ M → 0 is an exact sequence.

Since F is a faithfully flat module, 0 → N
⊆→ M → 0 is an exact sequence.

So N = M , which is a contradiction. So F ⊗ N ̸= F ⊗ M . Then F ⊗ N is
a weakly classical prime submodule by (1). Now for the converse, let F ⊗ N
be a weakly classical prime submodule of F ⊗ M . We have F ⊗ N ̸= F ⊗ M
and so N ̸= M . Let a, b ∈ R. Then (F ⊗N :F⊗M ab) = (0 :F⊗M ab) or
(F ⊗N :F⊗M ab) = (F ⊗N :F⊗M a) or (F ⊗N :F⊗M ab) = (F ⊗N :F⊗M b) by
Theorem 2.25. Suppose that (F ⊗N :F⊗M ab) = (0 :F⊗M ab). Hence

F ⊗ (N :M ab) = (F ⊗N :F⊗M ab) = (0 :F⊗M ab)

= (F ⊗ 0 :F⊗M ab) = F ⊗ (0 :M ab) .

Thus 0 → F ⊗ (0 :M ab)
⊆→ F ⊗ (N :M ab) → 0 is an exact sequence. Since F is a

faithfully flat module, 0 → (0 :M ab)
⊆→ (N :M ab) → 0 is an exact sequence which

implies that (N :M ab) = (0 :M ab). With a similar argument we can deduce that
if (F ⊗N :F⊗M ab) = (F ⊗N :F⊗M a) or (F ⊗N :F⊗M ab) = (F ⊗N :F⊗M b),
then (N :M ab) = (N :M a) or (N :M ab) = (N :M b). Consequently N is a weakly
classical prime submodule of M by Theorem 2.25. 2

Corollary 2.40. Let R be a um-ring, M be an R-module and X be an indeter-
minate. If N is a weakly classical prime submodule of M , then N [X] is a weakly
classical prime submodule of M [X].

Proof. Assume that N is a weakly classical prime submodule of M . Notice that
R[X] is a flat R-module. Then by Theorem 2.39. R[X] ⊗ N ≃ N [X] is a weakly
classical prime submodule of R[X]⊗M ≃ M [X]. 2
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