k-NIL RADICAL IN BCI-ALGEBRAS II

  • Jun, Y.B (Department of Mathematics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Hong, S.M (Department of Mathematics and Research Institute of Natural Science, Gyeongsang National University)
  • Published : 1997.07.01

Abstract

This paper is a continuation of [3]. We prove that if A is quasi-associative (resp. an implicative) ideal of a BCI-algebra X then the k-nil radical of A is a quasi-associative (resp. an implicative) ideal of X. We also construct the quotient algebra $X/[Z;k]$ of a BCI-algebra X by the k-nhil radical [A;k], and show that if A and B are closed ideals of BCI-algebras X and Y respectively, then

Keywords

References

  1. Math. Japon. v.35 Closed ideals and p-semisimple BCI-algebras C. S. Hoo
  2. Math. Japon. v.37 Nil-radical in BCI-algebras W. Huang
  3. Far East J. Math. Sci. v.5 k-nil radical in BCI-algebras S. M. Hong;Y. B. Jun;E. H. Roh
  4. Math. Japon. v.38 On nil ideals in BCI-algebras Y. B. Jun;J. Meng;E. H. Roh
  5. Pusan Kyongnam Math. J. v.9 An ideal characterization of commutative BCI-algebras J. Meng
  6. BCI-algebras J. Meng;Y. B. Jun
  7. Math. Japon. v.4 p-radical in BCI-algebras L. Tiande;X. Changchang
  8. Selected papers on BCK- and BCI-algebras(in P.R. China) v.1 Quasi-associative ideals of BCI-algebras Z. Yue;X. Zhang