• Title/Summary/Keyword: M&A Module

Search Result 1,436, Processing Time 0.032 seconds

ON SOME PROPERTIES OF MALCEV-NEUMANN MODULES

  • Zhao, Renyu;Liu, Zhongkui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.445-456
    • /
    • 2008
  • Let M be a right R-module, G an ordered group and ${\sigma}$ a map from G into the group of automorphisms of R. The conditions under which the Malcev-Neumann module M* ((G)) is a PS module and a p.q.Baer module are investigated in this paper. It is shown that: (1) If $M_R$ is a reduced ${\sigma}$-compatible module, then the Malcev-Neumann module M* ((G)) over a PS-module is also a PS-module; (2) If $M_R$ is a faithful ${\sigma}$-compatible module, then the Malcev-Neumann module M* ((G)) is a p.q.Baer module if and only if the right annihilator of any G-indexed family of cyclic submodules of M in R is generated by an idempotent of R.

ON A QUASI-POWER MODULE

  • PARK CHIN HONG;SHIM HONG TAE
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.679-687
    • /
    • 2005
  • In this paper we shall give a new definition for a quasi-power module P(M) and discuss some properties for P(M). The quasi-power module P(M) is a direct sum of invertible quasi-submodules C(H)'s of P(M) and then the quasi-submodule C(H) is also a direct sum of strongly cyclic quasi-submodules of C(H). When M is a quasi-perfect right R-module, we shall see that the quasi-power module P(M) is invertible.

A NOTE ON MONOFORM MODULES

  • Hajikarimi, Alireza;Naghipour, Ali Reza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.505-514
    • /
    • 2019
  • Let R be a commutative ring with identity and M be a unitary R-module. A submodule N of M is called a dense submodule if $Hom_R(M/N,\;E_R(M))=0$, where $E_R(M)$ is the injective hull of M. The R-module M is said to be monoform if any nonzero submodule of M is a dense submodule. In this paper, among the other results, it is shown that any kind of the following module is monoform. (1) The prime R-module M such that for any nonzero submodule N of M, $Ann_R(M/N){\neq}Ann_R(M)$. (2) Strongly prime R-module. (3) Faithful multiplication module over an integral domain.

DERIVATION MODULES OF GROUP RINGS AND INTEGERS OF CYCLOTOMIC FIELDS

  • Chung, I.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 1983
  • Let R be a commutative ring with 1, and A a unitary commutative R-algebra. By a derivation module of A, we mean a pair (M, d), where M is an A-module and d: A.rarw.M and R-derivation, i.e., d is an R-linear mapping such that d(ab)=a)db)+b(da). A derivation module homomorphism f:(M,d).rarw.(N, .delta.) is an A-homomorphism f:M.rarw.N such that f.d=.delta.. A derivation module of A, (U, d), there exists a unique derivation module homomorphism f:(U, d).rarw.(M,.delta.). In fact, a universal derivation module of A exists in the category of derivation modules of A, and is unique up to unique derivation module isomorphisms [2, pp. 101]. When (U,d) is a universal derivation module of R-algebra A, the A-module U is denoted by U(A/R). For out convenience, U(A/R) will also be called a universal derivation module of A, and d the R-derivation corresponding to U(A/R).

  • PDF

ON ENDOMORPHISM RING OF H-INVARIANT MODULES

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.6 no.2
    • /
    • pp.167-182
    • /
    • 1990
  • The relationships between submodules of a module and ideals of the endomorphism ring of a module had been studied in [1]. For a submodule L of a moudle M, the set $I^L$ of all endomorphisms whose images are contained in L is a left ideal of the endomorphism ring End (M) and for a submodule N of M, the set $I_N$ of all endomorphisms whose kernels contain N is a right ideal of End (M). In this paper, author defines an H-invariant module and proves that every submodule of an H-invariant module is the image and kernel of unique endomorphisms. Every ideal $I^L(I_N)$ of the endomorphism ring End(M) when M is H-invariant is a left (respectively, right) principal ideal of End(M). From the above results, if a module M is H-invariant then each left, right, or both sided ideal I of End(M) is an intersection of a left, right, or both sided principal ideal and I itself appropriately. If M is an H-invariant module then the ACC on the set of all left ideals of type $I^L$ implies the ACC on M. Also if the set of all right ideals of type $I^L$ has DCC, then H-invariant module M satisfies ACC. If the set of all left ideals of type $I^L$ satisfies DCC, then H-invariant module M satisfies DCC. If the set of all right ideals of type $I_N$ satisfies ACC then H-invariant module M satisfies DCC. Therefore for an H-invariant module M, if the endomorphism ring End(M) is left Noetherian, then M satisfies ACC. And if End(M) is right Noetherian then M satisfies DCC. For an H-invariant module M, if End(M) is left Artinian then M satisfies DCC. Also if End(M) is right Artinian then M satisfies ACC.

  • PDF

Purely Extending Modules and Their Generalizations

  • Shiv Kumar;Ashok Ji Gupta
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • A purely extending module is a generalization of an extending module. In this paper, we study several properties of purely extending modules and introduce the notion of purely essentially Baer modules. A module M is said to be a purely essentially Baer if the right annihilator in M of any left ideal of the endomorphism ring of M is essential in a pure submodule of M. We study some properties of purely essentially Baer modules and characterize von Neumann regular rings in terms of purely essentially Baer modules.

WHEN AN $\mathfrak{S}$-CLOSED SUBMODULE IS A DIRECT SUMMAND

  • Wang, Yongduo;Wu, Dejun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.613-619
    • /
    • 2014
  • It is well known that a direct sum of CLS-modules is not, in general, a CLS-module. It is proved that if $M=M_1{\oplus}M_2$, where $M_1$ and $M_2$ are CLS-modules such that $M_1$ and $M_2$ are relatively ojective (or $M_1$ is $M_2$-ejective), then M is a CLS-module and some known results are generalized.

DING INJECTIVE MODULES OVER FROBENIUS EXTENSIONS

  • Wang, Zhanping;Yang, Pengfei;Zhang, Ruijie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.217-224
    • /
    • 2021
  • In this paper, we study Ding injective modules over Frobenius extensions. Let R ⊂ A be a separable Frobenius extension of rings and M any left A-module, it is proved that M is a Ding injective left A-module if and only if M is a Ding injective left R-module if and only if A ⊗R M (HomR(A, M)) is a Ding injective left A-module.

PROPERTIES OF INDUCED INVERSE POLYNOMIAL MODULES OVER A SUBMONOID

  • Cho, Eunha;Jeong, Jinsun
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.307-314
    • /
    • 2012
  • Let M be a left R-module and R be a ring with unity, and $S=\{0,2,3,4,{\ldots}\}$ be a submonoid. Then $M[x^{-s}]=\{a_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ is an $R[x^s]$-module. In this paper we show some properties of $M[x^{-s}]$ as an $R[x^s]$-module. Let $f:M{\rightarrow}N$ be an R-linear map and $\overline{M}[x^{-s}]=\{a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ and define $N+\overline{M}[x^{-s}]=\{b_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}b_0{\in}N,\;a_i{\in}M}$. Then $N+\overline{M}[x^{-s}]$ is an $R[x^s]$-module. We show that given a short exact sequence $0{\rightarrow}L{\rightarrow}M{\rightarrow}N{\rightarrow}0$ of R-modules, $0{\rightarrow}L{\rightarrow}M[x^{-s}]{\rightarrow}N+\overline{M}[x^{-s}]{\rightarrow}0$ is a short exact sequence of $R[x^s]$-module. Then we show $E_1+\overline{E_0}[x^{-s}]$ is not an injective left $R[x^s]$-module, in general.

Direct sum decompositions of indecomposable injective modules

  • Lee, Sang-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.33-43
    • /
    • 1998
  • Matlis posed the following question in 1958: if N is a direct summand of a direct sum M of indecomposable injectives, then is N itself a direct sum of indecomposable innjectives\ulcorner It will be proved that the Matlis problem has an affirmative answer when M is a multiplication module, and that a weaker condition then that of M being a multiplication module can be given to module M when M is a countable direct sum of indecomposable injectives.

  • PDF