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ON SOME PROPERTIES OF MALCEV-NEUMANN
MODULES

RENYU ZHAO AND ZHONGKUI Liu

ABSTRACT. Let M be a right R-module, G an ordered group and ¢ a
map from G into the group of automorphisms of R. The conditions
under which the Malcev-Neumann module M % ({G)) is a PS module and
a p.q.Baer module are investigated in this paper. It is shown that: (1) If
Mp is a reduced o-compatible module, then the Malcev-Neumann module
M * ({G)) over a PS-module is also a PS-module; (2} If Mp is a faithful
o-compatible module, then the Malcev-Neumann module M % ((G)) is
a p.q.Baer module if and only if the right annihilator of any G-indexed
family of cyclic submodules of M in R is generated by an idempotent of
R.

1. Introduction and preliminaries

The Malcev-Neumann counstruction appeared for the first time in the latter
part of the 1940°s (the Laurent series ring, a particular case of Malcev-Neumann
ring, was used before by Hilbert). Using them, Malcev and Neumann indepen-
dently showed (in 1948 and 1949 resp.) that the group ring of an ordered
group over a division ring can be embedded in a division ring. Since then,
the construction has appeared in many papers, mainly in the study of various
properties of division rings and related topics. For instance, Makar-Limanov
in [10] used a particular skew-Laurent series division ring to prove that the
skew field of fractions of the first Weyl algebra contains a free noncommutative
subalgebra. The study of Malcev-Neumann group ring over arbitrary rings
was initiated in [9] by Lorenz while investigating properties of group algebras
of nilpotent groups. Other results on Malcev-Neumann rings can be found in
Musson and Stafford {11] and Sonin [14].

In [14], Sonin generalized the construction to obtain Malcev-Neumann mod-
ules over Malcev-Neumann rings. In this paper, the PS property and the
p.q.Baerness of Malcev-Neumann modules will be investigated. These results
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generalize the corresponding results for polynomial rings and Laurent power
series rings.

Throughout the paper all rings are associative with unity and all modules
are right unitary.

We construct the Malcev-Neumann (group) ring in the following. Let R
be a ring, G an ordered group, and suppose that ¢ is a map from G into
the group of automorphisms of R, z — o,. Suppose also that we are given
a map ¢ from G x G to U(R), the group of invertible elements of R. Now
R((G,0,1)) is the set of all formal sums f =} ., 7.2 with r; € R such that
supp(f)= {z € G | r; # 0} is well ordered. Addition is defined as usual, that

is
Z a,T + Z byy = Z(az +b.)z,

z€G yE€G z€G
and multiplication is defined by

(Z a,;w) (yengyy) = Z ( Z a0z (by)t(z, y))z

zel 2€G  {zylry=z2}

It is necessary to impose two additional conditions on o and ¢ to insure asso-
ciativity, namely that for all z,y,z € G,
(l) t(asy, z)oz(t(m,y)) - t(x, yz)t(y, Z)> (ll) Oy0y = 0y26(§> Z)a

where 6(y, z) denotes the automorphism of R induced by the unit ¢(y, z) (see,
(13, Lemma 1.1]). It is now routine to check that R((G, o,1)) is a ring which we
call the Malcev-Neumann ring. We make no explicit use of conditions (i) and
(ii}), so we will denote the construction simply by R * ((G)). Basic properties
of it (without twisting t), and the original Malcev-Neumann theorem can be
found in [13].

If M is a module over R, then the Malcev-Neumann module M * ((G)) is
the set of all formal sums }___; mqz with coefficients in M and well-ordered
supports. With operations defined as above, one can easily check that (i) and
(ii) insure that M * ((G)) is a right unitary module over R * ((G)).

For example, if G =Z, o, =idforall z € G, t(z,y) =1 for all 2,y € G,
then M  ((G)) p«((c)) is the Laurent series extension of M. If ¢ happens to
be the trivial homomorphism and ¢(z,y) = 1 for all 2,y € G, the resulting
untwisted module will denoted by M ((G)).

As usual, we shall identify R with the subring R-1 C R« {(G)), and identify
G with the subgroup 1- G of invertible elements in R * ((G)).

2. PS-modules

According to [12], a right R-module M is called PS-module if its socle
Soc{MEg) is projective, and a ring R is called a right PS-ring if R is a PS-
module. In [12], it was proved that if R is a right PS-ring then so is R[[z]]. If
R is a commutative ring and (S, <) is a strictly totally ordered monoid which
satisfied the condition that 0 < s for every s € S, in [7], it was proved that if
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M is a PS-module, then the module [[M5<]] of generalized power series over
M is a PS [[R%=]]-module. In this section, we will consider the PS property
of Malcev-Neumann modules.

Let o be an endomorphism of ring R (with a(1) = 1). Following from [6], a
module Mg is called a-reduced if, for any m € M and any a € R,

(1) ma = 0 implies mR (| Ma = 0.

(2) ma = 0 if and only if ma(a) = 0.

The module Mg is called reduced if Mp is 1-reduced.

The following result appeared in [6, Lemma 1.2].

Lemma 2.1. The following conditions are equivalent:
(1) Mg is a-reduced.
(2) For anym € M and a € R, the following conditions hold:
(a) ma = 0 implies mRa = mRa(a) = 0.
(b) maa(a) = 0 implies ma = 0.
(c) ma? = 0 implies ma = 0.

Definition 2.2. Given Mz and o as above, we say that Mp is o-compatible
ifforeachme M, re Rand z € G, mr =0 & mo,(r) =0.

Clearly, if o, = 1g, the identity map of R for any z € G, then any module
Mpg is o-compatible. If G = Z, o, = o® for all z € G, then Mg is reduced
o-compatible if and only if Mg is a-reduced, where a € Aut(R).

Lemma 2.3. Let M be a reduced o-compatible right R-module and G an or-

dered group. If ¢ = 3 camaz € M *((G)) and f = 3 cqayy € R*((G))
are such that ¢f =0, then mgay =0 for any z,y € G.

Proof. Let 0#£ ¢ € M * ((G)), 0+# f € Rx((G)) be such that ¢f = 0. Then
(1) 0=9¢f= Z }: mgoz(ay)t(z,y)z.

2€G {z,y|zy=2}

We will use transfinite induction on the ordered group (G, <) to show that
mgay =0 for any z € supp{¢) and any y € supp(f).

Let zp and yo be the minimal elements of supp(¢) and supp(f) in the <
order, respectively. If & € supp(¢) and y € supp(f) are such that zy = zoyy,
then zg < z and yo < y. If 2y < 2, then zoywo < zyo < 2y = zoyo, a
contradiction. Thus z = zg. Similarly, y = yo. Hence from (1) it follows that
Mg Tz (Gye )t (Z0,Yo) = 0. Thus mg,04,(ay,) = 0 since ¢(xq,yo) is invertible.
So mgyay, = 0 since M is o-compatible.

Now suppose that w € G is such that for any = € supp(¢) and y € supp{f)
with zy < w, mga, = 0. We will show that mza, = 0 for any 2 € supp(¢)
and y € supp(f) with 2y = w. For convenience, we write {(z,y) | zy = w} as
{{ziyys) |4 =1,2,...,n} with z; < 22 < --- < &, (Note that if z; = x9, then
from z1y1 = zay2 it follows that y; = yo, and thus (z1,y1) = {(z2,¥2)). Now,
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from (1), we have

n
(2) 0= Z mmam(ay)t(xvy) = Zmzial'i (ayi)t(miayi)'
{z.ylzy=w} =1
Forany 1 <i<n-—1, ;9. < Zpy, = w, and thus, by induction hypothesis,
we have mg,ay, = 0. Then mg,o05,(ay,)t(z;, yi)ay, = 0 since M is reduced.
Hence, multiplying (2) on the right hand side by a,, , we obtain
n
0= Zmzial‘i(ayi Wi, ¥i)ay, = Ma, 0z, (ay, )t(Zn, Yn)ay, -
i=1
Then my, 04, (ay, )tH{Tn, Yn)04z, (ay,) = 0 since M is o-compatible. Thus

2
mzn (a-zn (ayn)t(xn»yn)) = 0
Since M is reduced, we have mg, 0y, (ay, )t(2Zn,yn) = 0. Thus mg,a,, =0
since t(Zn,yn) is invertible and M is o-compatible. Now (2) becomes
n—1
(3) 2 Mg, 0z, (a’yi)t(mi7 yl) =0.
i=1
Multiplying a,, _, on (3) from the right-hand side we obtain mg,,_,a,,_, = 0 by
the same way as above. Continuing this process, one can prove that mz,a,, =0
for i = 1,2,...,n. Thus mya, = 0 for any z € supp(¢) and y € supp(f) with
Ty = w.
Therefore, by transfinite induction, mza, = 0 for any z € supp(¢) and
y € supp(f)- O

Let M be a right R-module. For any subset X of R, denote [y (X) = {m €
M | mX = 0}. The following result appeared in [15].

Lemma 2.4. The following statements are equivalent for a module Mg :

(1) Mg is a PS-module.

(2) If L is a mazimal right ideal of R, then either (L) = 0 or L = eR,
where e? = e € R.

Theorem 2.5. Let Mg be a reduced o-compatible module, G an ordered group.
If Mg is a PS-module, then so is M * ((G)).

Proof. Let L be a maximal right ideal of R * ((G)). By Lemma 2.4, it is
enough to show that either lys.(())(L) = 0 or L = aR * ((G)) for some o? =
a € R+ {(G)). Let I be the set of all constant coeflicients of elements in
L. Let J be the right ideal of R generated by I. If J = R, then there exist
al, a?,...,aY € I, fi, fay...,fn € L and 11, 72,...,7n € R such that 1 =
ajry + ajra + -+ + afr, with f; = Y gabz, i = 1,2,. ,n. Suppose
that ¢ = ZyEG myy € lyae)(L). Then ¢f; = 0. Thus mya},, = 0 by
Lemma 2.3. Particularly, mya’i =0foranyy € Gandanyi=1,2,...,n. Thus
my = my(air1 + afry + -+ + afry) =0, and so ¢ = 0. Thus lpr.c)) (L) = 0.
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Now suppose that J # R. We show that J is a maximal right ideal of R.

Let r€e R—J. Thenr € R* ((G)). f r € L, then r € J, a contradiction.
Thusr ¢ L. So R+ ((G)) = L+r-Rx((G)). It follows that there exist f € L
and g € R * ((G)) such that 1 = f4rg. Suppose that f = 3 _-a.z and
9 =2 yecbyy. Then 1 =a; +roi(b1)t(1,1) € J+rR. Thus R = J +rR.
Hence J is a maximal right ideal of R.

Since Mg is a PS-module, it follows that either [p;(J) = 0 or there exists
an e? = e € R such that J =eR.

Case 1. Suppose that Iy(J) = 0. We will show that Iy ) (L) = 0.
Let ¢ = 32 comyy € luwc) (L), 7 € J. Then there exist af, af,...,a} €
I, fi, fa,...,fn€ Land ry, r2,...,rn € R such that r = a}r; + adre + -+ +
aiTs, where af is the constant coefficient of f;. Since ¢ € lyru(ay) (L), ¢fi =0
for every i = 1,2,...,n. By Lemma 2.3, we have mya} = 0 for any y € G
and any ¢ = 1,2,...,n. Thus myr = my(alr, +alra + -+ afry,) = 0 for any
y € G. This means that m, € [5;(J) =0 for any y € G. Thus ¢ = 0, and so
I oy (L) = 0.

Case 2. Suppose that J = eR where e* = e € R. We will show that
L =e-Rx((G)). Ife ¢ L, then Rx((G)) = L+e-Rx*((G)). Thus
1= f+eg, where f=37 qa;z€ Land g=3 by € R+*((G)), and so
1=a;+eoi(b1)t(1,1) € J+eR = J, a contradiction. Therefore e € L, and so
e-R+((G)) € L. Conversely, suppose that f = 3 a;x € L. For any z € G,
there exists 7! € G such that z2~! = 1 since G is a group, and fz~! € L
since L is a right ideal of R * ((G)). Thus axo,(1)t(z,z71) € J = eR for any
z € G. Thus a, € J = eR since t(x,z~") is invertible and J is a right ideal of
R, and s0 a, = ea;. Thus f =e. 07 (ast(1,2)" )z € e- R+ ((G)). Thus
LCe-Rx((G)). Hence L =e- R+ ((G)) and the result follows. O

Corollary 2.6. Let M be o reduced module and G an ordered group. If M is
a PS-module, then M((G)) is a PS-module.

Corollary 2.7. Let o € Aut(R) and M be an a-reduced module. If M is a
PS-module, then M{[x,27"; )] gjjz,5-1;a] 18 @ PS-module.

Proof. Take G = Z and t(z,y) = 1 for any z,y € Z. For any z € Z, let
oz = a®. Then M is reduced and o-compatible. Now the result follows from
Theorem 2.5. O

3. p.g-Baer modules

In [5], Kaplansky introduced Baer rings as rings in which the right (left)
annihilator of every nonempty subset is generated by an idempotent. According
to Clark [4], a ring R is said to be quasi-Baer if the right annihilator of each
right ideal of R is generated by an idempotent. These definitions are left-right
symmetric. As a generalization of quasi-Baer rings, Birkenmeier, Kim and Park
in [2] introduced the concept of principally quasi-Baer rings. A ring R is called
right principally quasi-Baer (or simply right p.q.Baer) if the right annihilator
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of a principal right ideal of R is generated by an idempotent. Similarly, left
p-q-Baer rings can be defined. A ring is called p.q.Baer if it is both right and
left p.q.Baer ring. The Baerness, the quasi-Baerness and the p.q.Baerness of
the (Laurent) polynomial extension and the (Laurent) power series extension
of rings have been discussed by many authors, see for example [1, 2, 3, 8].
Recently, in [6], Lee-Zhou introduced Baer modules and quasi-Baer modules as
follows:

(1) Mg is called Baer if, for any subset X of M, rr(X) = eR where 2 =
e€R.

(2) Mg is called quasi-Baer if, for any submodule X of M, rg(X) = eR
where 2 = e € R.

Also, the results on (Laurent) polynomial extension and (Laurent) power
series extension of Baer rings and quasi-Baer rings were extended to the cor-
responding module extensions, for more details, see [6]. In this section, the
concept of p.q.Baer modules will be introduced, and a necessary and suffi-
cient condition for some modules under which the Malcev-Neumann module
M * ((G)) is p.q.Baer will be given.

Definition 3.1. A module My is called principally quasi-Baer {p.q.Baer for
short) if for any m € M, rr(mR) = eR where e = ¢ € R.

It is clear that R is a right p.q.Baer ring if and only if Ry is a p.q.Baer
module. If R is a p.q.Baer ring, then for any right ideal I of R, Ir is a p.q.Baer
module. Moreover, every quasi-Baer module is p.q.Baer.

Lemma 3.2. Let G be an ordered group and Mg a o-compatible p.q.Baer
module. If ¢ =3 comgz € M +((G)) and f = 3 ccayy € Rx ((G)) are
such that $R * ((G))f = 0, then mzRay, =0 for any z,y € G.

Proof. Let 0 # ¢ = 3" camor € M*((G)) and 0 # f =3 5 ayy € Rx((G))
be such that ¢R % ((G))f = 0. Then for any r € R, from

O=¢rf = Z Z ma04 (ro1(ay)t(1,y)) iz, y)z
2€C {z,ylzy=s}
it follows that
Z My (ral(ay)t(l,y))t(a:,y) =0, Vzed.
{z,y|lzy=2}

Let 2o and yo denote the minimal elements of supp(¢) and supp{f) in the <
order, respectively. If z € supp(¢) and y € supp(f) are such that zy = zoyy,
then 29 < z and yg < y. If 2y < z, then zpyy < xyo < Y = ZoYo, a
contradiction. Thus z = z¢. Similarly, ¥ = y¢. Hence

Y Maoa(roi(ay)t(1,y))t(@,y) = May0u, (ro(ay (1, 30))t(z0, Yo) = O-

{zytzy=zow}
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Thus M40z, (101 (ay, )t (1, y0)) = 0 since ¢(xo,yo) is invertible. Hence, by the
g-compatibility of M, we have mg,r01(ay,)t(1,yo) = 0. By the way as above,
we can get mg,ray, = 0, which means that my, Ray, = 0.

Now suppose that w € G is such that for any z € supp(¢) and y € supp(f)
with 2y < w, mzRa, = 0. We will show that m, Ra, = 0 for any = € supp(¢)
and y € supp(f) with zy = w. If there are not z € supp(¢) and y € supp(f)
such that xy = w, then clearly the conclusion holds. Now suppose that z €
supp(¢) and y € supp(f) are such that zy = w. For convenience we write
{{z,y) | zy = w} as {(zs,w:) |1 =1,2,...,n} with 21 < z3 < --- < z,. Then
for any r € R, from

Z mgog(ro{ay)t(1l,y))t(z,y) =0

{z.ylzy=w}
it follows that
n
(4) meigmi (7‘0’1 (ayzﬁ(l, yi))t(fl'i,yi) =0.
i=1
For each ¢ = 1,2,...,n, since Mg is a p.q.Baer module, there exists egi =

ez, € R such that rp(m,,R) = e;;R. Let v’ € R and take r = rez, in
(4). From mg,r'ey, = 0 it follows that mz ez, o1(ay,) t(1,91) = 0. Thus
My, 04, (7' ez, 01(ay, )t(1,y1)) = 0 since Mp is o-compatible. Hence

k£3

(5) Zmzigmi (Tle$101(am)t(l»yi))t(xf’yi) =0.
1=2

Note that z1y; < z;3; = w for any 7 = 2,...,n. Thus by induction hypothesis,
mg, Ray, = 0. Thus ay, € rp(My, R) = €5, R. S0 ay, = €z,ay,. Thus mg,r'(1~
€z, )0y, =0, and 50 mg,7'(1 — ez, )01(ay,) = 0 since My is g-compatible. Thus
Mz, 7' (1 — ez, )o1(ay, )t(1,y;) = 0. Thus my, 04, (r'(1 — ez )o1(ay,)t(1,3:)) =0
since Mg is o-compatible. Hence

Mg Ox; (T’J] (a’yi)t(l’ y%)) = Mg, 0z; {T/emo-l (a‘yz‘)t(la yt))
Now from (5) it follows that

(6) meidwi (?"’0’1 (a’yz‘)t(layi))t(mi?yi) =0.
=2

Let p € R and take ' = pe,,. Then, since my,pe,, = 0, we have
Mgy Oz, (pewzgl (ayz)t(la yQ)) =0.
Thus
n
Z Mg, Oz, (pe:cz 01 (a”yi )t(lv yi))t(xia yé)

=3

= meiawi (po1(ay,)t (1, i)t (s, yi) = 0.

=3



452 RENYU ZHAO AND ZHONGKUI LIU

Continuing in this manner, we have my, 05, (go1(ay, )t(1,yn))t(Zn,yn) = 0,
where g is an arbitrary element of R. Thus my,, 04, (901(ay, )t(1,yn)) = 0 since
t(Zn,yn) is invertible. This implies that m, ga,, = 0since Mg is o-compatible.
Hence
Mg, 190y, = 0,..., Mg qay;, =0.
Therefore, by transfinite induction, we have shown that for any « € supp(¢)
and y € supp(f), myRay =0. O

Lemma 3.3. Let G be an ordered group and Mg a o-compatible module. Then
the following are equivalent:

(1) For any ¢ = 3 cqmat € M+ ((G)) and any f =3 cqayy € R+
(G)), ¢R * ((G))f = 0 implies myRay =0 for all z and y.

(2) For any 6 = S mat € M+ (G)), Truq(ay(6R * ((G))) = ra(X) »
((G)), where X = {m,R |z € G}.

Proof. (1) = (2) Assume that f = ) .0y € Tre(c))(#R * ((G))) with
¢ € M+ ((G)). By (1), myRa, = 0 for all z and y. Thus ay € rr(X), and so
f € rr(X) * ((G)). Hence rr.()) (R * ((G))) € rr(X) * ((G)). Conversely,
suppose that f = Y . ayy € Tr(X) * ((G)). Then ay € rr(X) forally € G.
Thus myRa, = 0 for all z and y. Then for any g =), b.2 € R*((G)), by
the o-compatibility of Mg, mo,(b,)o,0,(ay) = 0 for any z,y,2 € G. Thus
my0o:(b2)050.(ay)ox(t(2,y))t(x,p) = 0 for any z,y, z,p € G. Hence

¢gf = ( > mzw) ( >y bzaz(ay)t(z,y)p>
zeG PEG {z,y|zy=p}
=3 Y Y meoa(b)oeos(ay)os(t(z )@ p)a = 0.
9€G {z,plzp=q} {z,y|zy=p}
’(lg}gi)means that f € rra(c) (@R * ((G)))- So rru(c)) (@R * ((G))) = rr(X) *
(2). == (1) Suppose that ¢ =3 oMz € M x((G)) and f =3 cayy €
R ((G)) are such that ¢R * ((G))f = 0. Thus f € rr.a)(¢R * ((G))) =
rr(X) * ((G)). Hence ay € 7g(X). So mgRay = 0 for all z and y. O

Lemma 3.4. Let G be an ordered group and Mg a o-compatible module. Then
for any m € M, Tr.cy(m - R* ((G))) = rr(mR) x ((G))-

Proof. Let f = Y ,cq0c® € TRy(@)(m R*((G))). Then for any r € R,
mroy(ag) t(1,z) = 0. Thus mra; = 0 since t(1,x) is invertible and Mg is
o-compatible. Hence a; € rr(mR). So f € rr(mR) * ((G)). Conversely,
suppose that f = Y s a.% € rR(mR) * ((G)). Then mRa, = 0. Hence for

any g = EyeG byy € Rx* ((G))’ mal(by)t(l,y)ay(az)t(y,sc) = 0. Thus

mgf = Z Z mo1(by)t(1,y)oy(az)t(y, )z = 0.

2€G {y,z|yz=z}
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Hence f € rroay(m - R* ((G))). So, rrucy(m - R * ((G))) = rr(mR) *
(G))- O

In order to prove the main result, we first give the necessity of the module
M « ((G)) to be a p.q.Baer module.

Proposition 3.5. Let G be an ordered group and Mg a faithful o-compatible
module. If M % ((G)) is a p.q.Baer module, then Mg is o p.q.Baer module.

Proof. Let m € M. By Lemma 3.4, rg.(c))(m - R * ((G))) = rr(mR) = ((G)).
Since M *((G)) is a p.q.Baer module, there exists f*> = f € R*((G)) such that
rrecy (M- R ((G))) = fR*((G)). Suppose that f =3 .. azx. We will
show that rgr(mR) = a1 R and a% = a1, which will imply that Mg is a p.q.Baer
module. From f € rge(cy)(m - R * ((G))) it follows that mrf = 0 for any
r € R. Thus mroy(a;)t(1,z) = 0. Thus for any = € G, mra, = 0 since ¢(1,z)
is invertible and Mg is o-compatible. Thus a; € rg(mR). Conversely, let r €
rr(mR). Then r € rg(mR) x ((G)). Thus r = fr. Then r = a10:1(r)t(1,1) €
a;R. Hence rg(mR) = a1 R. Since a; = fay, (1 — ai)o1(a1)t(1,1) = 0. Thus

a? = a; since (1, 1) is invertible and Mg is a faithful o-compatible module. [J

Let X be a non-empty set. We will say that X is G-indexed if there exists
a well-ordered subset I of G such that X is indexed by I.

Theorem 3.6. Let G be an ordered group and Mg a faithful o-compatible
module. Then the following are eguivalent:

(1) M = ((G)) s a p.q.Baer module.

(2) For any G-indexed set X consisting of cyclic submodules of M, there
exists an idempotent e € R such that rp(X) = eR.

Proof. (1) = (2) Suppose that X = {m R | my; € M,z € I} is a G-indexed
family of cyclic submodules of M, meaningly I is a well-ordered subset of G.
Let m; = 0 whenz € G-I, then ¢ = 3 - m.x € Mx((G)) since supp(¢)C I
is a well-ordered subset of G. Since M «{{G)) is a p.q.Baer module, there exists
f? = f € R« ((G)) such that rg. ) (9R * ((G))) = f - R*((G)). On the
other hand, since M % ((G)) is a p.q.Baer module, M is p.q.Baer by Proposition
3.5. Thus rg.((a)) (#R*((G))) = rr(X) *((G)) by Lemma 3.2 and Lemma 3.3.
Hence rr(X)*((G)) = f- R*((G)). Let f = 3 . ayy, then by analogy with
the proof of Proposition 3.5, we can show that rg(X) = a; R and a? = a;.

(2) = (1) Let ¢ = 3 omex € M x((G)). Then X = {mzR | my €
M,z € supp(¢)} is a G-indexed family of cyclic submodules of M. By (2),
there exists an idempotent e € R such that rg(X) = eR. It is easy to see
that M is p.q.Baer by (2). Thus rg.q)(¢R * (@) = rr(X) * ((G)) =
(eR) * ({G)) = e- R* ((G)) by Lemma 3.2 and Lemma 3.3, and which implies
that M = ({G)) is a p.q.Baer module. O

In the rest of this section, we will work with the special module Rg, which
will lead to more interesting results.
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Recall from [2], an idempotent e € R is left (resp. right} semicentral in R if
ere = re (resp. ere = er) for all r € R. Equivalently, e? = e € R is left (resp.
right) semicentral if eR (resp. Re) is an ideal of R. Since the right annihilator
of a right ideal is an ideal, we see that if the right annihilator of a G-indexed
family of principal right ideals of R is generated by an idempotent e, then e is
a left semicentral idempotent.

Let I(R) be the set of all idempotents of R, S;(R) the set of all left semicen-
tral idempotents of B and C(R) the set of all central idempotents of R. Let S
be a G-indexed subset of I{R). We say that S has a generalized join in I(R) if
there exists an idempotent e € I(R) such that

(1) gR(1 ~e)=0for any g € S.

(2) If f € I(R) is such that gR(1— f)=0forany g € S, then eR(1~ f) = 0.

Corollary 3.7. Let G be an ordered group and R a o-compatible ring. Then
the following conditions are equivalent:
(1) R=((G)) is a right p.q.Baer ring.
(2) The right annihilator of any G-indexed family of principal right ideals
of R is generated by an idempotent of R.
If SiI(R) C C(R), then the following conditions are equivalent to the
conditions above:
(3) R is a right p.q.Baer ring and for any G-indezed subset {es | s € I} of
I(R), Nser Tr(esR) = €R.
(4) R is g right p.q.Baer ring and for any G-indexed subset {es | s € I} of
C(R), Nsesrr(esR) = eR.
(5) R 1is a right p.q.Baer ring and any G-indezed subset of C(R) has a
generalized join in I{R).
(6) R is a right p.q.Baer ring and any G-indexzed subset of I(R) has a
generalized join in I{R).

Proof. (1) <= (2) follows from Theorem 3.6.

(2) = (3). Note that for any a € R, {aR} is G- indexed. Thus (2) = (3)
is straightforward.

(3) = (4). It is directly verified.

(4) = (5). Let {es | s € I'} be a G-indexed subset of C(R). By (4), there
exists an e € I(R) such that [,.; rr(esR) = eR. We will show that 1 —¢ is
a generalized join of the set {es | s € I}. It is clearly that e, R(1 — (1 —¢€)) =
esRe = 0 for any s € I. Assume that f2 = f € R is such that e,R(1— f) =0
forany s€ I. Then 1 — f € (\,¢;rr(esR) = eR. So (1 - f) = e(1 — f). Since
e € Si(R), (1 —e)R(1— f) = 0. Hence 1 — e is a generalized join of {e; | s € I}
in I(R).

(5) = (6). Let {es | s € I'} be an G-indexed subset of I(R). Since R is a
right p.q.Baer ring, there exist fs € §{R) C C(R) such that rg{esR) = f.R
for all s € I. By (5), {1 — fs | s € I} has a generalized join in I(R), say e.
Then (1 — f)R(1 —e) =0 for any s € I. Thus, for any r € R and any s € I,
(1 —e) = for(1 —e). Hence e;r(1 —€) = esfsr(l —e) = 0 for any s € I.
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This means that e; R(1 — €) = 0 for any s € I. Suppose that f € I{R) is such
that esR(1 ~ f) = 0 for each s € I. Then 1 ~ f € rg(esR) = f,R, and so
(1= f) = fs(1 = f). Thus (1 - f)(1 - f) = 0. Hence (1 — f.)R(1 — f) = 0.
Since e is a generalized join of {1 — f, | s € I}, it follows that eR(1 — f) = 0.
Hence e is a generalized join of {e; | s € I'}.

(6) => (2). Suppose that X = {a;R | as € R, s € I} is a G-indexed family
of principal right ideals of R. Then there exists a left semicentral idempotent
e? = e, € Rsuch that rr(asR) = e R for each s € I. By the hypothesis, the set
{1—es | s € I'} has a generalized join f. Then (1—es)R(1—f) = 0. We will show
that rr(X) = (1—f)R. Since (1—es)R(1—f) =0, (1 f) = esr(1— f) for any
7 € R. Thus as7(1 — f) = ase,r(1 — f) = 0. This means that (1 — f) € rg(X).
Conversely, suppose that p € rg(X). Then asRp = 0 for any s € I. Thus
p € Tr(asR) = esR, and so p = e,p for any s € I. Suppose that rg(pR) =
gR, where g is a left semicentral idempotent. Since e; is left semicentral, by
the hypothesis, e, is central. Thus we have pr = e pr = pre,, which means
l1—es; € gR Thus 1 —e; =g(l —e;) for any s € I. So (1 —es)R(1—g) =0.
Since f is a generalized join of {1 — e, | s € I}, it follows that fR(1 — g) = 0.
Hencep =p—pg=p(l-g)=(1-g)p= (1~ f)(1-g)p € (1- f)R. Therefore,
rr(X) = (1 - f)R. O

In [8], it was shown that if §;(R) C C(R), then R|[[z]] is a right p.q.Baer
ring if and only if R is a right p.q.Baer ring and any countable subset of I(R)
has a generalized join in I(R). Here we have

Corollary 3.8. Let a € Aut(R) and R an a-compatible ring. If S;(R) € C(R),
then R[[xz,z~';0]] is a right p.q.Baer ring if and only if R is a right p.q.Baer
ring and any countable subset of C(R) has a generalized join in I(R).
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