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ON ENDOMORPHISM RING OF
H-INVARIANT MODULES*

Soon-Sook Bae

0. ABSTRACT

The relationships between submodules of a module and ideals of the
endomorphism ring of a2 module had been studied in (1). For a submo-
dule L of a moudle M, the set I" of all endomorphisms whose images
are contained in L is a left ideal of the endomorphism ring End(M) and
for a submodule N of M, the set Iy of all endomorphisms whose kernels
contain N is a right ideal of End(M).

In this paper, author defines an H-invariant module and proves that
every submodule of an H-invariant module is the image and kernel of
unique endomorphisms. Every ideal I*(Iy) of the endomorphism ring
End(M) when M is H-invariant is a left(respectively, right) principal
ideal of End(M). From the above results, if a module M is H-invariant
then each left, right, or both sided ideal I of End{M) is an intersection
of a left, nght, or both sided principal ideal and I itself appropriately.
If M is an H-invariant module then the ACC on the set of all left ideals
of type I" implies the ACC on M. Also if the set of all right ideals of
type I has DCC, then H-invariant module M satisfies ACC. If the set
of all left ideals of type I' satisfies DCC, then H-invariant module M sa-
tisfies DCC.
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H the set of all right ideals of type Iy satisfies ACC then H-invariant
module M satisfies DCC. Therefore for an H-mvariant module M, if the
endomorphism ring End(M) is left Noetherian, then M satisfies ACC.
And if End(M) is right Noetherian then M satisfies DCC. For an H-in-
variant module M, if End(M) is left Artinian then M satisfies DCC. Also
if End(M) is right Artinian then M satisfies ACC.

1. INTRODUCTION

Every ring is assumed to be an associative ring with an identity and
every module to be a left module over a ring.

For an -element a of ring R, '{a) =Ra+Za means the lefi ideal genera-
ted by a. Also “(a)=aR+Za means the right ideal generated by a and
(a)='(a) +(a) + RaR means the ideal generated by a in a ring R.

The ring of R-endomorphisms of a left R-module M, denoted by End
(zM), will be written on the right side of M as right operators on M,
that is, kMew«M) will be considered on this paper. For a submodule L

of a left R-module M, the subset {feEnd(zM)[Imf<L} and the subset
{feEnd (:M)L<kerf} of the endomorphism ring End(:M) will be denoted
by I', I, respectively. Then I" and I, become to be a left and a right ideal
of End(zM) respectively.

Especially, if L is a fully invariant submodule of a module M, then I"
and 1. turn out to be both sided ideals of End(M). Thus for two fully
invariant submodules L, N of a module M, we have a both sided ideal

%=1"NIy, which will be studied. Every right ideal I of End{M) is con-
tained in the right ideal I+ where N={2 kerf.

Especially if such N is the kernel of an endomorphism, say g then
I7 (@) NI. Moreover if such N=kerg is fully invariant in M, then L= (g)
Nl in End(M). A left R-moduel M 1s said to be free if it is a sum of
copies of R.
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Theorem.(p57, (12)) Let X={ali £ A} be a basis of a free module M.
Given any module B and any function f © X—>B there exists a unique ho-
momorphism f: M—B extending f.

In a free module M with a basis X, for underlying set UM(forget ad-
dition and scalar multiplication) there is a free module with basis UM.
Hence basis X is a subset of UM so that there is a unique homomor-
phism j : M—>FUM extending the inclusion X—=FUM since M is free

FUM
UM 3j
xz WM

Hence we need a definition of an H-invaniant module such that such
1 is an inclusion. A free module M is said to be H-invariant if there is
an inclusion R-homomorphism from M into FUM

From this definition every submodule of an H-invariant module is an
image of a unique endomorphism and a kernel of a unique endomor-
phism. Hence i an H-invariant module M, for each submodule L, I* is
a left principal ideal of End{M), I is a right principal ideal of End(M).
Since every H-invanant module is projective (proposition 2, p82(9)) in



170 Bae, Soon-Sook

an H-invanant module M, every epimorphism is left invertible in End
(M). Thus if L is a2 small submodule of M, then the left ideal I' is a
small left ideal of End(M) and if N is a large submodule of an H-inva-
riant module M, then the right ideal I« is small in End(M), In an H-in-
variant module if I is a left ideal of End(M), then I= (D)l for a uni-
que endomorphism f such that E Img=1Imf. For a right idal I of End
(M), we have I="(f)1 for a umque endomorphism f such that m

kerg=kerf. Hence, since two sided ideal I has two fully invariant sub-
module L= E Img=Imh and n kerg=N=kerf for unique endomor-
phisms h, 1 . End(M) we have that I={(h)N{ONIL For two fully inva-
nant submodules L, N of an H-invariant module, we have a both sided

ideal 15x=1{i)r{g), wherer L=Imf and N=Kkerg for unique ermdomorphi-
sms f, g in End(M). In last section author invest these results to study
the relationship between the ACC(ascending chain condition), DCC(des-
cending chain condition)on H-invanant module left Noetherian, right
Noetherian, right Artinian, left Artinian endomorphism ring. If «M satis-
fies ACC, then the set of all 1deals of type I' satisfies ACC and the set
of ideals of type Iy satisfies DCC. If M satisfies DCC, then the set of
all ideals of type I* satsfies DCC and the set of all ideals of type Iy satis-
fies ACC. In an H-wvariant module the partial converse holds. If the
set of all tdeals of type I' satisfies ACC or the set of ail ideals of type
I. satisftes DCC then H-invariant module M satisfies ACC. If End(M)
is left Noetherian, then the set of all ideals of type I'satisfies ACC, and
hence H-invariant module M satisfies ACC. Consequently, if End(M) is
left Noetherian, then H-invariant module M satisies ACC. The similar
results are discussed in this paper.

1. H-INVARIANT MODULE

A left R-module M is said to be free if it is a sum of copies of R.
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For any set X, there exists a free module A having X as a basis.

Theorem 1.1, (p57(12)) Let X={alicl} be a basis of a free module
A. Given any module B and any function f . X—>B there is a unique R-
homorphism f . A-B extending f.

e~ -~
Mt

Remark 1.2. In a free module xM with a basis X, let UM be the un-
derlying set of M(forget addition and scalar multiplication), then we
have the{up to 1somorphism) free module FUM with basis UM. We
know that basis X 15 a subset of UM, and UM 1s a subset of FUM. Thus
the inclusion mapping 1. X>FUM exists. If M 1s a free module, then
we have a unique R-homomorphism ) M—FUM. But such j need not
to be an inclusion. hence we need the following definition,

Definition. 1.3. A free R-module M 1s said to be H-invanant if there
15 an inclusion R-homomorphism j | M—>FUM where FUM is the free
R-module generated by the underlying set UM of <M

Remark 1.4. Since every free module is projective, every epimorphism
1s left invertible, Hence in an H-invanant module every epimorphism in
the endomorphism ring is left invertible But not every free module
need be injective and not every free module need be H-invariant, H-in-
variantness is not a sufficient condition to be injective.

But we have the following result, every monomorphism is right inver-
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tible in endomorphism ring of an H-invariant module.

Theorem 1.5. In an H-invariant module M, every monomorphism in

End(gM) is invertible.

Proof. Let f be any monomorphism in End(:M) then consider a diag-
ram

M L UM —T M JE
/
£ /
/
/
/
y.
M

As a set map f has a right inverse f'such that ff' =1 For such f’
there exists a unique R-homomorphism T’ extending ' so we have an
R-endomorphism ji' : M—M such that {jf' =1. Hence f is right invertible
n End(kM). Since j is an inclusion R-homomorphism from H-invariant-
ness of M.

Theorem 1.6. If L is a small submodule of an H-invariant module M,
then the left ideal I* is small in End{(:M).

Proof. This easily follows from the similar way of proof Theorem 4.4
in {17) and using that every epimorphism is right invertible.
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Theorem 1.7. If N is a large submodule of an H-nvariant M, then
the right ideal Iy is small in End(GM).

Proof. This easily follows from the same way in proof of Theorem 5.4
in (17) and using Theorem 1.5.

Theorem 1.8. For any submodule L of an H-invariant module &M,
there is a unique endomorphism feEnd(zM) such that L=1Imf

Proof. Define C, 1 UM=M—M by xC.= {x if xeL
10, otherwise.
Then we have a diagram in which there is a unique R-homomorphism
o - FUM—M such that C.=1j9=j@(note the composition map jo is an
R-homomorphism). Hence ImC,=L=Imj®. Once we had regarded an H-
invariant module M as a submodule of a free module FUM then the
composition j© i1s umique. Hence L=Imj9. f=j9 is the required one.

UM = M

Theorem 1.9. For any submodule L of an H-invariant module M, the
left ideal I' 1s principal in End(GM).
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Proof. Since every free module is projective (Proposition) 2, p82(9))
and since L=Imf for a unique feEnd(z:M) by Theorem 1.8. I“='(f) by
Theorem 4.7 in (17)

Corollary 1.10. For any fully invariant submodule L of an H-invariant
module M, the both sided ideal I* is principal in End(GM).

Proof. By Corollary 4.8 in (17} and Theorem 1.10 I*=(f) for a unique
endomorphism.

Theorem 1.11. Let I be a_left ideal of End(zM) for an H-invanant
module M, [=() I for a unique endomorphism f.

Proof. Let L=Z§I Imi. Then there i1s a unique endomorphism f{ such
&
that L=Imf by Theorem 18. From (1) 11, mn (17) ISI* and from
Theorem 1.10, I'='(f), we have I='(f)nL

Corollary 1.12. Let I be a both sided ideal of End(;M) for an H-inva-
rtant module :M. Then I=(f)nI for a unique feEnd(zM).

Proof. By Remark 2.3. in[l’Z]LZF.EII Imi is a fuily invariant submedule
3
of an H-invariant module M. By Corollary 1.10. and similar computation
in Corollary 1.11. we have I=(f)nI for a unique endomorphism f.

Theorem 1.13. For any submodule N of an H-invariant module M,
there is a unique endomorphism geEnd(z:M) such that kerg=N.

Proof. Define Cyn - UM=M—>M by xcux= x, if xeM—N
0, otherwise.
Then we have a diagam, where M—N={xsM{xgN},
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UM
//;",
- ’ I
e g
oM = M—1—n" /D
CM\N ’

in which there is a unique R-homomorphism @ : FUM—>M such that
Cus= 1i?=jp(here, the composition j¢is an R-homomorpiism}. Hence
{ xeM}xcu_«=0 } =kerjp=N. The composition g=j®is the required en-
domorphism.

Theorem 1.14. For any submodule N of an H-invariant module M,
the right ideal Iy is a right principal ideal of End(<M).

Proof. By Theorem 1.13, there 1s a unique endomorphism g such that
N=kerg. If fely is given arbitrarily, then we clamm that f=gh for some
endomorphism h | M—M.

Let f, g M/N—>M be defined by (x+N)f=xf and (x+N)g=xg for
all x+N in M/N. Then for the projection n: M—>M/N, we have nf=f{
and ng=g Since N=kerg=<ker f which implies that f and g are well
defined on M/N. Considering a diagram where g'is denoted by a right
inverse map of a 1-to-1 map g since as a set map, every one-to-one map

has a right inverse.

And let h=g', then {=gh=gg'f and for such h there is a unigue R-
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j/FUfiﬂ
A

Ng,
7’
k‘

homomorphism h : FUM—M extending h. As a map rf=f=ngljh=gh
when h=1jh=gh when h=1jh=jh is taken.

Therefore f=gh. Hence Ix="(g) which is a right principle ideal of End
(M.

Corofiary 1.15. For any fully invariant submodule N of an H-invariant
module gM, the both sided Iy is principal in End(zM).

Proof. By the above theorem, Iy=(g) for a unique endomorphism
gsEnd (RM).

Theorem 1.16. Let I be any right ideal of End(:M) for an H-invariant
module M. Then [=*(g)I for a unique endomorphism ge End(:M).

Proof. Let N= keri. Then there exists a unique endomorphism ge

End(GM) such that N=kerg, by Theorem 6.11.

By (1) 22 in (17) 1=1s and by Theorem 114, Iy="(g) so we have
I=hnI="(@nL

Theorem 1.17 In an H-invariant module gM, if 1 is a both sided ideal
of End{(;M), then there exist f, ggEnd(xM) such that I=() (NI, uni-
quely.
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Proof. From Remarks 1.4 and 2.3 in{17), every both sided ideal I has
two fully invariant submodules L:i)él Imi and N=1e keri. Now we
have two unique endomorphisms f, g& End(@M) such that L=Imf and
N=kerg by Theorem 18 and 1.13. Thus I=1k nI=I'nknI={On(@ NI
is followed.

Corollary 1.18. Let @M be an H-invariant module. Then for two fully
invariant submodules L, N. the both sided ideal [k ={)n(g) for unique
endomorphisms f, g in EndGM).

Proof. By Theorems 1.8 and 1.13, L=Imf and N=kerg for unique en-
domorphisms f, g in End(:M). Hence by Corollaries 110 and 115,
k =I'nL=(Dn(g.

Corollary 1.19. Let M be an H-invariant module and let I be a subset
of End(zM). Then we have the following

(1) if Iis a left ideal, then I="{DN(giNl

(2) if 1 is a right 1deal, then I=(HN(gnI
where L=I‘A;Imi=lmf and N:.Ql keri=kerg for unique endomorphisms
f, geEnd (M),

Proof. By Theorems 1.8 and 1.13, the existences of f, g in End(:M)
are guaranteed such that L=Imf and N=kerg.

By Remark 1.4 (17} for a left ideal I, N is a fully invariant submo-
dule. Hence we have (1} I="()n(g)nL similarly for a right sided ideal
I, L is a fully invariant submodule of :M hence we can conclude that
I=(Dn{gnl
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2. MODULE WITH CHAIN CONDITION {ACC/DCC)

A module M is said to satisfy the ascending chain condition(ACC) on
submodules(or to be Noetherian) if every chain L,<L,<Ls<-:++of su-
bmodules of M, there is an integer n such that L,=L. for all iZn
(7). A module M is said to satisfy the descending chain condition(DCC)
on submodules (or to be Artinian) if for every chain NiZN;ZNy=------
of submodules of M, there is an integer m such that N.=N,, for all i>
.
A ring R is left(resp. right) Noetherian if R satisfies ACC on left(resp.
right) ideais. K is said to be Notherran if R is both left and right Noe-
therian. A ring R is left(resp. right) Artmian if R satisfies the DCC on
left(resp. right) ideals. R is said to be Artinian if R is both left and right
Artinian.

But it is still hard to say that ACC on a module M is possible to imply
ACC on the endomorphism ring End(:M). For certain module, namely
an H-invariant module, the converse holds, in other words, if M is H-in-
vanant then ACC on End(M) implies ACC on submodules of M. We are
going to prove this gradually.

Lernma 2.1 In an H-invanant module, if L and L' are distinct submo-
dules of M, then the left ideals I* and I' are distinct in End(M).

Proof. In an H-invariant module M, by Theorem 1.8, L=Imf and L’
=Img for unique endomorphisms f, ge End(M). Suppose the left ideals
I"and I are equal. Then fe[“=I* says that L=Imf<L’ thus we have
L=V’ stmilar argument says that L’<L. Hence L=L’ which is contradi-
cted.
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Lemma 2.2 In an H-invariant module M, two distinct submodules N,
N'have distinct right ideals Ix Iy, respectively.

Proof. In an H-invariant module, by Theorem 113, for submodules N,
N'of a module M, there are unique endomorohisms f, g such that N=
kerf, N'=kerg. Suppose that the right ideais Ir and I are equal Then
fe lyv=Iv implies that N'<kerf=N and ge Iy=1Iv imphes that N<kerg
=N'Thus N=N’

Remark 2.3. In an H-invariant module M, if L£L’, then =], and
also if N«N' then Lexh.

Note 2.4. Without H-invanantness of a module M, the above Lemma
2.1 and 22 don’t have to have these properties. For an example let M
=R the set of ali reals, Q the set of all rationals, and Z the set of all
integers. Then R 1s not an H-invariant(since R is not free) module over
Z and *=F=0 even though Z=<Q. And I,=1L=0.

Theorem 2.5 Let M be an H-invariant module and the set {I"[L<
M} satisfy the ACC. then M satisfies ACC.

Proof. Let L;<1,<Ls-'---be any ascending chain of submodules of M.
Then we have an ascending chain IM"SI2STP<-of the set {I"|L=M}

By the hypothesis, the set { I"{L < M} satisfies ACC, hence there is
an integer n such that I"=I" for all iZn. By Lemma 2.1, L.=L, for all
iZn Thus theorem has been proved

Theorem 2.6. Let M be an H-invanant module and the set {Iy|N=<
M} satisfy the DCC. Then M satisfies ACC.

Proof. Let Ny <N, <N, =<-e-- be any ascending chain of submodules of
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M. Then we have a descending chain

Ia 22 hez of the set {InI{N<M} which satisfies DCC by hypo-
thesis and hence there is an integer n such that Iy,=Iw for all iZn
By Lemma 2.2, N,=N, for all iZn.

Corollary 2.7. Let M be an H-invariant module and the set {I'|L<
M} satiafy DCC. Then M satisfies DCC.,

Proof. It is proved by a similar argument of Theorem 2.5.

Corollary 2.8. Let M be an H-invariant module and the set {Iy{N<
M| satisfy the ACC. Then M satifies DCC.

Theorem 2.9. Let M be an H-invariant module and End(M) be left
Notherian. Then M satisfies ACC.

Proof. Since End{M) is left Noetherian, the set {I*|L<M} satisfies
ACC. By Theorem 2.5, M satisfies ACC.

Theorem 2.10. Let M be an H-invariant module and End(M) be right
Noehterian. Then M satisfies DCC.

Proof. Since End(M) is a right Noetherian ring, the set {Ix|N<M }
satisfies ACC. Thence M satisfies DCC by Corollary 2.8.

Corollary 2.11. Let M be an H-invariant module and End(M) be
Noetherian. Then M satisfies ACC and DCC.

Theorem 2.12. Let M be an H-invariant module and End(M) be left
Artinian. Then M satifies DCC.
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Proof. Since End(M) is left Artinian, the set {I‘|L<M} satisfies
DCC. Then by Corollary 2.7, M satisfies DCC.

Theorem 2.13. Let M be an H-invariant module and End{M) be right
Artinian. Then M satisfies ACC.

Proof. Since End(M) is right Artinian, the set {In|N<M} satisfies
DCC. Then by Theorem 26, M satisfies ACC.

Corollary 2.14. Let M be an H-invariant module and End(M) be Ar-
timan. Then M satisfies ACC and DCC.

Proof. Form the above 2.12 and 2.13, it follows immediatety.
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