WHEN AN \mathscr{S}-CLOSED SUBMODULE IS A DIRECT SUMMAND

Yongduo Wang and Dejun Wu

Abstract

It is well known that a direct sum of CLS-modules is not, in general, a CLS-module. It is proved that if $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are CLS-modules such that M_{1} and M_{2} are relatively ojective (or M_{1} is M_{2}-ejective), then M is a CLS-module and some known results are generalized.

1. Introduction

CS-modules play important roles in rings and categories of modules and their generalizations have been studied extensively by many authors recently. In [3], Goodearl defined an \mathscr{S}-closed submodule of a module M is a submodule N for which M / N is nonsingular. Note that \mathscr{S}-closed submodules are always closed. In general, closed submodules need not be \mathscr{S}-closed. For example, 0 is a closed submodule of any module M, but 0 is \mathscr{S}-closed in M only if M is nonsingular. As a proper generalization of CS-modules, Tercan introduced the concept of CLS-modules. Following [8], a module M is called a $C L S$-module if every \mathscr{S}-closed submodule of M is a direct summand of M. In this paper, we continue the study of CLS-modules. Some preliminary results on CLS-modules are given in Section 1. In Section 2, direct sums of CLS-modules are studied. It is shown that if $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are CLS-modules such that M_{1} and M_{2} are relatively ojective, then M is a CLS-module and some known results are generalized. Tercan [8] proved that if a module $M=M_{1} \oplus M_{2}$ where M_{1} and M_{2} are CS-modules such that M_{1} is M_{2}-injective, then M is a CS-module if and only if $Z_{2}(M)$ is a CS-module. It is shown that Tercan's claim is not true in Section 3.

Throughout this paper, R is an associative ring with identity and all modules are unital right R-modules. We use $N \leq M$ to indicate that N is a submodule of M. Let M be a module and $S \leq M . S$ is essential in M (denoted by $\left.S \leq_{e} M\right)$ if for any $T \leq M, S \cap T=0$ implies $T=0$. A module M is $C S$ if for any submodule N of M, there exists a direct summand K of M such that

[^0]$N \leq_{e} K$. A submodule K of M is closed in M if K has no proper essential extension in M, i.e., whenever L is a submodule of M such that K is essential in L, then $K=L$. It is well known that M is CS if and only every closed submodule is a direct summand of $M . Z(M)\left(Z_{2}(M)\right)$ denotes the (second) singular submodule of M. For standard definitions we refer to [3].

2. Preliminary results

Lemma 2.1 ([8, Lemma 7]). Any direct summand of a CLS-module is a CLSmodule.
Proposition 2.2. A module M is a $C L S$-module if and only if for each \mathscr{S} closed submodule K of M, there exists a complement L of K in M such that every homomorphism $f: K \oplus L \rightarrow M$ can be extended to a homomorphism $g: M \rightarrow M$.
Proof. This is a direct consequence of [7, Lemma 2].
Following [1], a module M is \mathscr{G}-extending if for each submodule X of M there exists a direct summand D of M such that $X \cap D \leq_{e} X$ and $X \cap D \leq_{e} D$.
Proposition 2.3. Let M be a \mathscr{G}-extending module. Then M is a CLS-module.
Proof. Let N be an \mathscr{S}-closed submodule of M. There exists a direct summand D of M such that $N \cap D \leq_{e} N$ and $N \cap D \leq_{e} D$. Note that $D /(N \cap D)$ is both singular and nonsingular. Then $D=N \cap D$ and so $N=D$. Therefore, M is a CLS-module.

In general, a CLS-module need not be a \mathscr{G}-extending module as the following example shows.
Example 2.4. Let K be a field and $V=K \times K$. Consider the ring R of 2×2 matrix of the form $\left(a_{i j}\right)$ with $a_{11}, a_{22} \in K, a_{12} \in V, a_{21}=0$ and $a_{11}=a_{22}$. Following [8, Example 14], R_{R} is a CLS module which is not a module with $\left(C_{11}\right)$. Therefore, R_{R} is not a \mathscr{G}-extending module by [1, Proposition 1.6].

Applying Proposition 2.3, we will give some examples which are CLS modules, but not CS-modules as follows.
Example 2.5. Let M_{1} and M_{2} be abelian groups (i.e., \mathbb{Z}-modules) with M_{1} divisible and $M_{2}=\mathbb{Z}_{p^{n}}$, where p is a prime and n is a positive integer. Since $M=M_{1} \oplus M_{2}$ is \mathscr{G}-extending by [1, Example 3.4], it is a CLS module by Proposition 2.3. But M is not CS, when M_{1} is torsion-free. In particular, $\mathbb{Q} \oplus \mathbb{Z}_{p^{n}}(n \geq 2, p=$ prime $)$ is a CLS module, but not CS.
Example 2.6. Let M_{1} be a \mathscr{G}-extending module with a finite composition series, $0=X_{0} \leq X_{1} \leq \cdots \leq X_{m}=M_{1}$. Let $M_{2}=X_{m} / X_{m-1} \oplus \cdots \oplus X_{1} / X_{0}$. Since $M=M_{1} \oplus M_{2}$ is \mathscr{G}-extending by [1, Example 3.4], it is a CLS module by Proposition 2.3. But M is not CS in general. In particular, $M \oplus(U / V)$ is a CLS module, but not CS, where M is a uniserial module with unique composition series $0 \neq V \subset U \subset M$.

Proposition 2.7. Let M be a nonsingular module. Then the following conditions are equivalent.
(i) M is a CS-module.
(ii) M is a \mathscr{G}-extending module.
(iii) M is a CLS-module.

Proof. By [1, Proposition 1.8] and [8, Corollary 5].
Proposition 2.8. Let M be a CLS-module and X be a submodule of M. If $Z(M / X)=0$, then M / X is a CS-module.

Proof. Since M is a CLS-module, X is a direct summand of M. Write $M=$ $X \oplus X^{\prime}, X^{\prime} \leq M$. Then M / X is a CS-module by Lemma 2.1 and Proposition 2.7.

Corollary 2.9 ([1, Proposition 1.9]). If M is \mathscr{G}-extending, $X \unlhd M$, and $Z(M / X)=0$, then M / X is a CS-module.
Corollary 2.10 ([1, Corollary 3.11(i)]). Let M be a \mathscr{G}-extending module. If D is a direct summand of M such that $Z(D)=0$, then D is a CS-module.

Proposition 2.11. Let $K \leq_{e} M$ such that K is a $C L S$-module and for each $e^{2}=e \in \operatorname{End}(K)$ there exists $\bar{e}^{2}=\bar{e} \in \operatorname{End}(M)$ such that $\left.\bar{e}\right|_{K}=e$. Then M is a CLS-module.
Proof. Assume K is a CLS-module. Let X be an \mathscr{S}-closed submodule of M. Then $K=(X \cap K) \oplus K^{\prime}, K^{\prime} \leq K$. Let $X \cap K=e K$, where $e^{2}=e \in \operatorname{End}(K)$. By hypothesis, there exists $\bar{e}^{2}=\bar{e} \in \operatorname{End}(M)$ such that $\left.\bar{e}\right|_{K}=e$. Since $K \leq_{e} M$, $\bar{e} K \leq_{e} \bar{e} M$. Observe that $\bar{e} M \cap X \leq_{e} \bar{e} M$. But $\bar{e} M /(\bar{e} M \cap X)$ is nonsingular. Hence $\bar{e} M \leq X$. Thus $X=\bar{e} M$ as $\bar{e} K \leq_{e} X$. Therefore, M is a CLSmodule.

By analogy with the proof of [2, Corollary 3.14], we can obtain:
Corollary 2.12. Let M be a module. If M is $C L S$, then so is the rational hull of M.

3. Direct sums of CLS modules

It is well known that a direct sum of CLS-modules is not, in general, a CLSmodule (see [8]). In this section, direct sums of CLS-modules are studied. It is shown that if $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are CLS-modules and M_{1} and M_{2} are relatively ojective, then M is a CLS-module and some known results are generalized. Tercan [8] proved that if a module $M=M_{1} \oplus M_{2}$ where M_{1} and M_{2} are CS-modules such that M_{1} is M_{2}-injective, then M is a CS-module if and only if $Z_{2}(M)$ is a CS-module. It is shown that Tercan's claim is not true in this section.

Let A, B be right R-modules. Recall that B is A-ojective [6] if and only if for any complement C of B in $A \oplus B, A \oplus B$ decomposes as $A \oplus B=C \oplus A^{\prime} \oplus B^{\prime}$
with $A^{\prime} \leq A$ and $B^{\prime} \leq B . A$ and B are relatively ojective if A is B-ojective and B is A-ojective.

Lemma 3.1. Let $M=A \oplus B$, where B is A-ojective and A is a CLS-module. If X is an \mathscr{S}-closed submodule of M such that $X \cap B=0$, then M decomposes as $M=D \oplus A^{\prime} \oplus B^{\prime}$, where $A^{\prime} \leq A, B^{\prime} \leq B$.

Proof. Let X be an \mathscr{S}-closed submodule of M with $X \cap B=0$. Then M / X is nonsingular. Note that $X \cap A$ is an \mathscr{S}-closed submodule of A. Hence $X \cap A$ is a direct summand of A. Write $A=(X \cap A) \oplus A_{1}, A_{1} \leq A$. By Lemma 2.1 and Proposition 2.7, A_{1} is a CS-module. Let $K=(X \oplus B) \cap A$. Then $X \oplus B=K \oplus B$ and $K=(X \cap A) \oplus\left(K \cap A_{1}\right)$. There exists a closed submodule A_{1}^{\prime} of A_{1} such that $K \cap A_{1} \leq_{e} A_{1}^{\prime}$. Then A_{1}^{\prime} is a direct summand of A_{1}. Write $A_{1}=A_{1}^{\prime} \oplus A_{1}{ }^{\prime \prime}, A_{1}{ }^{\prime \prime} \leq A_{1}$. Now $X \oplus B=K \oplus B=(X \cap A) \oplus\left(K \cap A_{1}\right) \oplus B \leq_{e}$ $(X \cap A) \oplus A_{1}^{\prime} \oplus B$. Let $N=(X \cap A) \oplus A_{1}^{\prime} \oplus B$. Then X is a complement of B in N. Now B is $(X \cap A) \oplus A_{1}^{\prime}$-ojective by [6, Proposition 8]. By [6, Theorem 7], $N=X \oplus A^{\prime} \oplus B^{\prime}$, where $A^{\prime} \leq(X \cap A) \oplus A_{1}^{\prime}$ and $B^{\prime} \leq B$. Therefore, $M=X \oplus A^{\prime} \oplus A_{1}{ }^{\prime \prime} \oplus B^{\prime}$, as required.

Theorem 3.2. Let $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are CLS-modules. If M_{1} and M_{2} are relatively ojective, then M is a CLS-module.
Proof. Let X be an \mathscr{S}-closed submodule of M. If $X \cap M_{1}=0$, then X is a direct summand of M by Lemma 3.1. Let $X \cap M_{1} \neq 0$. Then $X \cap M_{1}$ is a direct summand of M_{1}. Write $M_{1}=\left(X \cap M_{1}\right) \oplus M_{1}^{\prime}, M_{1}^{\prime} \leq M_{1}$. If $X \cap M_{2}=0$, then the result follows by Lemma 3.1. Let $X \cap M_{2} \neq 0$. Then $X \cap M_{2}$ is a direct summand of M_{2}. Write $M_{2}=\left(X \cap M_{2}\right) \oplus M_{2}^{\prime}, M_{2}^{\prime} \leq M_{2}$. Then $X=\left(X \cap M_{1}\right) \oplus\left(X \cap M_{2}\right) \oplus\left(X \cap\left(M_{1}^{\prime} \oplus M_{2}^{\prime}\right)\right)$. Note that M_{1}^{\prime} and M_{2}^{\prime} are CSmodules and M_{1}^{\prime} and M_{2}^{\prime} are relatively ojective, so $M_{1}^{\prime} \oplus M_{2}^{\prime}$ are a CS-module by [6, Theorem 7$]$. Hence $X \cap\left(M_{1}^{\prime} \oplus M_{2}^{\prime}\right)$ is a direct summand of $M_{1}^{\prime} \oplus M_{2}^{\prime}$. Therefore, M is a CLS-module, as desired.
Corollary 3.3 ([8, Theorem 10]). Let R be a ring and M a right R-module such that $M=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ is a finite direct sum of relatively injective modules $M_{i}, 1 \leq i \leq n$. Then M is a CLS-module if and only if M_{i} is a $C L S$-module for each $1 \leq i \leq n$.

Let M_{1} and M_{2} be modules such that $M=M_{1} \oplus M_{2}$. Recall that M_{1} is M_{2}-ejective [1] if and only if for every submodule K of M with $K \cap M_{1}=0$ there exists a submodule M_{3} of M such that $M=M_{1} \oplus M_{3}$ and $K \cap M_{3} \leq_{e} K$.

Lemma 3.4. Let A_{1} be a direct summand of A and B_{1} a direct summand of B. If A is B-ejective, then A_{1} is B_{1}-ejective.

Proof. Write $M=A \oplus B, A=A_{1} \oplus A_{2}$ and $B=B_{1} \oplus B_{2}$. First we prove that A_{1} is B-ejective. Write $N=A_{1} \oplus B$. Let X be a submodule of N with $X \cap A_{1}=0$. Then $X \cap A=0$. Since A is B-ejective, there is a submodule C of M such that $M=A \oplus C$ and $X \cap C \leq_{e} X$. Hence $N=A_{1} \oplus\left(N \cap\left(A_{2} \oplus C\right)\right)$.

Clearly, $X \cap\left(N \cap\left(A_{2} \oplus C\right)\right) \leq_{e} X$. Therefore, A_{1} is B-ejective. Next we prove that A is B_{1}-ejective. Write $L=A \oplus B_{1}$. Let Y be a submodule of L with $Y \cap A=0$. Since A is B-ejective, there exists a submodule D of M such that $M=A \oplus D$ and $D \cap Y \leq_{e} Y$. Then $L=A \oplus(L \cap D)$. Clearly, $Y \cap(L \cap D) \leq_{e} Y$. Therefore, A is B_{1}-ejective. Thus A_{1} is B_{1}-ejective.

Theorem 3.5. Let $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are CLS-modules. If M_{1} is M_{2}-ejective, then M is a CLS-module.
Proof. Let N be an \mathscr{S}-closed submodule of M. If $N \cap M_{1}=0$, then M_{1} is nonsingular. Since M_{1} is M_{2}-ejective, there is a submodule M_{3} of M such that $M=M_{1} \oplus M_{3}$ and $N \cap M_{3} \leq_{e} N$. Note that $N /\left(N \cap M_{3}\right)$ is both singular and nonsingular. Hence $N=N \cap M_{3}$. Since $M_{3} \cong M_{2}, M_{3}$ is a CLS-module. Clearly, M_{3} / N is nonsingular. Then N is a direct summand of M. Let $N \cap M_{1} \neq 0$. Then $N \cap M_{1}$ is a direct summand of M_{1}. Write $M_{1}=\left(N \cap M_{1}\right) \oplus M_{1}^{\prime}, M_{1}^{\prime} \leq M_{1}$. Similarly, $M_{2}=\left(N \cap M_{2}\right) \oplus M_{2}^{\prime}, M_{2}^{\prime} \leq M_{2}$. Then $N=\left(N \cap M_{1}\right) \oplus\left(N \cap M_{2}\right) \oplus\left(N \cap\left(M_{1}^{\prime} \oplus M_{2}^{\prime}\right)\right)$. Since M_{1} is M_{2}-ejective, M_{1}^{\prime} is M_{2}^{\prime}-ejective by Lemma 3.4. Note that M_{1}^{\prime} and M_{2}^{\prime} are \mathscr{G}-extending modules. By [1, Theorem 3.1], $M_{1}^{\prime} \oplus M_{2}^{\prime}$ is \mathscr{G}-extending. Hence $N \cap\left(M_{1}^{\prime} \oplus M_{2}^{\prime}\right)$ is a direct summand of $M_{1}^{\prime} \oplus M_{2}^{\prime}$. Therefore, M is a CLS-module, as desired.

Corollary 3.6 ([8, Theorem 9]). Let $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are CLS-modules. If M_{1} is M_{2}-injective, then M is a $C L S$-module.
Corollary 3.7. Let $M=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ be a finite direct sum. If M_{i} is M_{j}-ejective for all $j>i$ and each M_{i} is a CLS-module, then M is a CLS-module.

Proof. By analogy with the proof of [1, Corollary 3.2].
Corollary 3.8. Let $M=M_{1} \oplus M_{2}$. Then
(i) If M_{1} is injective, then M is a CLS-module if and only if M_{2} is a CLSmodule.
(ii) If M_{1} is a CLS-module and M_{2} is semisimple, then M is a CLS-module.

Corollary 3.9. A module M is a CLS-module if and only if $M=Z_{2}(M) \oplus$ $M^{\prime}, M^{\prime} \leq M$, where $Z_{2}(M)$ and M^{\prime} are CLS-modules.

Proof. Let M be a CLS-module. Then $M=Z_{2}(M) \oplus M^{\prime}, M^{\prime} \leq M$. By Lemma 2.1, $Z_{2}(M)$ and M^{\prime} are CLS-modules. Conversely, if $M=Z_{2}(M) \oplus M^{\prime}, M^{\prime} \leq$ M, then M^{\prime} is $Z_{2}(M)$-injective. Now the result follows by Theorem 3.5.
Corollary 3.10. Let $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are CS-modules. If M is nonsingular and M_{1} is M_{2}-ejective, then M is a CS-module.

Proof. By Proposition 2.7 and Theorem 3.5.
Corollary 3.11. Let $M=M_{1} \oplus M_{2}$ be a direct sum of CS-modules M_{1} and M_{2}, where M_{2} is nonsingular. If M_{1} is M_{2}-ejective and $Z_{2}\left(M_{1}\right)$ is M_{2}-injective, then M is a CS-module.

Proof. By analogy with the proof of [8, Corollary 11].
Corollary 3.12 ([4, Theorem 4]). Let $M=M_{1} \oplus M_{2}$ be a direct sum of CSmodules M_{1} and M_{2}, where M_{2} is nonsingular. If M_{1} is M_{2}-injective, then M is a CS-module.

Corollary 3.13. Let $M=M_{1} \oplus M_{2}$ be a direct sum of CS-modules M_{1} and M_{2}. If M_{1} is M_{2}-ejective, $Z_{2}\left(M_{1}\right)$ is M_{2}-injective and $Z_{2}\left(M_{2}\right)$ is M_{1}-injective, then M is a CS-module if and only if $Z_{2}(M)$ is a CS-module.

Proof. Let $Z_{2}(M)$ be a CS-module. Then $M=Z_{2}\left(M_{1}\right) \oplus Z_{2}\left(M_{1}\right) \oplus M_{1}^{\prime} \oplus M_{2}^{\prime}$, where $M_{1}^{\prime} \leq M_{1}$ and $M_{2}^{\prime} \leq M_{2}$. By [6, Theorem 1], $Z_{2}\left(M_{1}\right)$ is M_{1}^{\prime}-injective and $Z_{2}\left(M_{2}\right)$ is M_{2}^{\prime}-injective. Then $Z_{2}(M)$ is $M_{1}^{\prime} \oplus M_{2}^{\prime}$-injective. Since M_{1} is $M_{2^{-}}$ ejective, $M_{1}^{\prime} \oplus M_{2}^{\prime}$ is a CS-module by Corollary 3.10. Hence M is a CS-module by [6, Theorem 1$]$.

Corollary 3.14. Let $M=M_{1} \oplus M_{2}$ be a direct sum of CS-modules M_{1} and M_{2} such that M_{1} is M_{2}-injective and $Z_{2}\left(M_{2}\right)$ is M_{1}-injective. Then M is a CS-module if and only if $Z_{2}(M)$ is a CS-module.

We close this paper with the following.
A. Tercan [8, Corollary 13] showed that if a module $M=M_{1} \oplus M_{2}$ where M_{1} and M_{2} are CS-modules such that M_{1} is M_{2}-injective, then M is a CS-module if and only if $Z_{2}(M)$ is a CS-module. The following example shows that this claim is not true.

Example 3.15. Let $R=\mathbb{Z}$ and $M_{\mathbb{Z}}=\mathbb{Q} \oplus \mathbb{Z}_{p^{n}}(n \geq 2, p=$ prime $)$. We know that \mathbb{Q} is $\mathbb{Z}_{p^{n}}$-injective and $\mathbb{Q}, \mathbb{Z}_{p^{n}}$ are uniform modules. Following by [1, Example 3.4], M is not CS. Next we show that $Z_{2}(M)$ is CS. Since $\mathbb{Q}_{\mathbb{Z}}$ is nonsingular, it is easy to see that $Z_{2}(M)=Z_{2}\left(\mathbb{Z}_{p^{n}}\right)$. Since $\mathbb{Z}_{p^{n}}$ is CS, $Z_{2}\left(\mathbb{Z}_{p^{n}}\right)$, as a direct summand of $\mathbb{Z}_{p^{n}}$, is CS.

References

[1] E. Akalan, G. F. Birkenmeier, and A. Tercan, Goldie extending modules, Comm. Algebra 37 (2009), no. 2, 663-683.
[2] G. F. Birkenmeier and A. Tercan, When some complement of a submodule is a summand, Comm. Algebra 35 (2007), no. 2, 597-611.
[3] K. R. Goodearl, Ring Theory, Marcel-Dekker, New York, 1976.
[4] A. Harmanci and P. F. Smith, Finite direct sums of CS-modules, Houston J. Math. 19 (1993), no. 4, 523-532.
[5] M. A. Kamal and B. J. Müller, Extending modules over commutative domains, Osaka J. Math. 25 (1988), no. 3, 531-538.
[6] S. H. Mohamed and B. J. Müller, Ojective modules, Comm. Algebra 30 (2002), no. 4, 1817-1827.
[7] P. F. Smith and A. Tercan, Continuous and quasi-continuous modules, Houston J. Math. 18 (1992), no. 3, 339-348.
[8] A. Tercan, On CLS-modules, Rocky Mountain J. Math. 25 (1995), no. 4, 1557-1564.

Yongduo Wang
Department of Applied Mathematics
Lanzhou University of Technology
Lanzhou 730050, P. R. China
E-mail address: ydwang@lut.cn
Dejun Wu
Department of Applied Mathematics
Lanzhou University of Technology
Lanzhou 730050, P. R. China
E-mail address: wudj2007@gmail.com

[^0]: Received June 2, 2011.
 2010 Mathematics Subject Classification. 16D10.
 Key words and phrases. CLS-module, ejective module, ojective module.

