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WHEN AN S -CLOSED SUBMODULE IS

A DIRECT SUMMAND

Yongduo Wang and Dejun Wu

Abstract. It is well known that a direct sum of CLS-modules is not, in
general, a CLS-module. It is proved that if M = M1 ⊕ M2, where M1

and M2 are CLS-modules such that M1 and M2 are relatively ojective
(or M1 is M2-ejective), then M is a CLS-module and some known results
are generalized.

1. Introduction

CS-modules play important roles in rings and categories of modules and
their generalizations have been studied extensively by many authors recently.
In [3], Goodearl defined an S -closed submodule of a module M is a submodule
N for which M/N is nonsingular. Note that S -closed submodules are always
closed. In general, closed submodules need not be S -closed. For example, 0
is a closed submodule of any module M , but 0 is S -closed in M only if M is
nonsingular. As a proper generalization of CS-modules, Tercan introduced the
concept of CLS-modules. Following [8], a module M is called a CLS-module if
every S -closed submodule of M is a direct summand of M . In this paper, we
continue the study of CLS-modules. Some preliminary results on CLS-modules
are given in Section 1. In Section 2, direct sums of CLS-modules are studied. It
is shown that if M = M1 ⊕M2, where M1 and M2 are CLS-modules such that
M1 and M2 are relatively ojective, then M is a CLS-module and some known
results are generalized. Tercan [8] proved that if a module M = M1 ⊕ M2

where M1 and M2 are CS-modules such that M1 is M2-injective, then M is
a CS-module if and only if Z2(M) is a CS-module. It is shown that Tercan’s
claim is not true in Section 3.

Throughout this paper, R is an associative ring with identity and all modules
are unital right R-modules. We use N ≤ M to indicate that N is a submodule
of M . Let M be a module and S ≤ M . S is essential in M (denoted by
S ≤e M) if for any T ≤ M,S ∩ T = 0 implies T = 0. A module M is CS if
for any submodule N of M , there exists a direct summand K of M such that
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N ≤e K. A submodule K of M is closed in M if K has no proper essential
extension in M , i.e., whenever L is a submodule of M such that K is essential
in L, then K = L. It is well known that M is CS if and only every closed
submodule is a direct summand of M . Z(M)(Z2(M)) denotes the (second)
singular submodule of M . For standard definitions we refer to [3].

2. Preliminary results

Lemma 2.1 ([8, Lemma 7]). Any direct summand of a CLS-module is a CLS-

module.

Proposition 2.2. A module M is a CLS-module if and only if for each S -

closed submodule K of M , there exists a complement L of K in M such that

every homomorphism f : K ⊕ L → M can be extended to a homomorphism

g : M → M .

Proof. This is a direct consequence of [7, Lemma 2]. �

Following [1], a moduleM is G -extending if for each submoduleX ofM there
exists a direct summand D of M such that X ∩D ≤e X and X ∩D ≤e D.

Proposition 2.3. Let M be a G -extending module. Then M is a CLS-module.

Proof. Let N be an S -closed submodule of M . There exists a direct summand
D of M such that N ∩ D ≤e N and N ∩ D ≤e D. Note that D/(N ∩ D) is
both singular and nonsingular. Then D = N ∩ D and so N = D. Therefore,
M is a CLS-module. �

In general, a CLS-module need not be a G -extending module as the following
example shows.

Example 2.4. Let K be a field and V = K ×K. Consider the ring R of 2× 2
matrix of the form (aij) with a11, a22 ∈ K, a12 ∈ V, a21 = 0 and a11 = a22.
Following [8, Example 14], RR is a CLS module which is not a module with
(C11). Therefore, RR is not a G -extending module by [1, Proposition 1.6].

Applying Proposition 2.3, we will give some examples which are CLS mod-
ules, but not CS-modules as follows.

Example 2.5. Let M1 and M2 be abelian groups (i.e., Z-modules) with M1

divisible and M2 = Zp
n , where p is a prime and n is a positive integer. Since

M = M1 ⊕ M2 is G -extending by [1, Example 3.4], it is a CLS module by
Proposition 2.3. But M is not CS, when M1 is torsion-free. In particular,
Q⊕ Zp

n (n ≥ 2, p = prime) is a CLS module, but not CS.

Example 2.6. Let M1 be a G -extending module with a finite composition
series, 0 = X0 ≤ X1 ≤ · · · ≤ Xm = M1. Let M2 = Xm/Xm−1 ⊕ · · · ⊕X1/X0.
Since M = M1⊕M2 is G -extending by [1, Example 3.4], it is a CLS module by
Proposition 2.3. But M is not CS in general. In particular, M⊕(U/V ) is a CLS
module, but not CS, where M is a uniserial module with unique composition
series 0 6= V ⊂ U ⊂ M .
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Proposition 2.7. Let M be a nonsingular module. Then the following condi-

tions are equivalent.

(i) M is a CS-module.

(ii) M is a G -extending module.

(iii) M is a CLS-module.

Proof. By [1, Proposition 1.8] and [8, Corollary 5]. �

Proposition 2.8. Let M be a CLS-module and X be a submodule of M . If

Z(M/X) = 0, then M/X is a CS-module.

Proof. Since M is a CLS-module, X is a direct summand of M . Write M =
X ⊕X ′, X ′ ≤ M . Then M/X is a CS-module by Lemma 2.1 and Proposition
2.7. �

Corollary 2.9 ([1, Proposition 1.9]). If M is G -extending, X E M , and

Z(M/X) = 0, then M/X is a CS-module.

Corollary 2.10 ([1, Corollary 3.11(i)]). Let M be a G -extending module. If

D is a direct summand of M such that Z(D) = 0, then D is a CS-module.

Proposition 2.11. Let K ≤e M such that K is a CLS-module and for each

e2 = e ∈End(K) there exists ē2 = ē ∈End(M) such that ē|K = e. Then M is

a CLS-module.

Proof. Assume K is a CLS-module. Let X be an S -closed submodule of M .
Then K = (X ∩K)⊕K ′,K ′ ≤ K. Let X ∩K = eK, where e2 = e ∈End(K).
By hypothesis, there exists ē2 = ē ∈End(M) such that ē|K = e. Since K ≤e M ,
ēK ≤e ēM . Observe that ēM ∩X ≤e ēM . But ēM/(ēM ∩X) is nonsingular.
Hence ēM ≤ X . Thus X = ēM as ēK ≤e X . Therefore, M is a CLS-
module. �

By analogy with the proof of [2, Corollary 3.14], we can obtain:

Corollary 2.12. Let M be a module. If M is CLS, then so is the rational hull

of M .

3. Direct sums of CLS modules

It is well known that a direct sum of CLS-modules is not, in general, a CLS-
module (see [8]). In this section, direct sums of CLS-modules are studied. It is
shown that if M = M1⊕M2, where M1 and M2 are CLS-modules and M1 and
M2 are relatively ojective, then M is a CLS-module and some known results
are generalized. Tercan [8] proved that if a module M = M1 ⊕M2 where M1

and M2 are CS-modules such that M1 is M2-injective, then M is a CS-module
if and only if Z2(M) is a CS-module. It is shown that Tercan’s claim is not
true in this section.

Let A, B be right R-modules. Recall that B is A-ojective [6] if and only if
for any complement C of B in A⊕B,A⊕B decomposes as A⊕B = C⊕A′⊕B′
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with A′ ≤ A and B′ ≤ B. A and B are relatively ojective if A is B-ojective
and B is A-ojective.

Lemma 3.1. Let M = A⊕B, where B is A-ojective and A is a CLS-module.

If X is an S -closed submodule of M such that X ∩B = 0, then M decomposes

as M = D ⊕A′ ⊕B′, where A′ ≤ A,B′ ≤ B.

Proof. Let X be an S -closed submodule of M with X ∩B = 0. Then M/X is
nonsingular. Note that X ∩ A is an S -closed submodule of A. Hence X ∩ A
is a direct summand of A. Write A = (X ∩ A) ⊕ A1, A1 ≤ A. By Lemma
2.1 and Proposition 2.7, A1 is a CS-module. Let K = (X ⊕ B) ∩ A. Then
X⊕B = K⊕B and K = (X ∩A)⊕ (K∩A1). There exists a closed submodule
A′

1 of A1 such that K ∩A1 ≤e A
′

1. Then A′

1 is a direct summand of A1. Write
A1 = A′

1⊕A1
′′, A1

′′ ≤ A1. Now X⊕B = K⊕B = (X ∩A)⊕ (K ∩A1)⊕B ≤e

(X ∩A)⊕A′

1 ⊕B. Let N = (X ∩A)⊕A′

1 ⊕B. Then X is a complement of B
in N . Now B is (X ∩ A) ⊕ A′

1-ojective by [6, Proposition 8]. By [6, Theorem
7], N = X ⊕ A′ ⊕ B′, where A′ ≤ (X ∩ A) ⊕ A′

1 and B′ ≤ B. Therefore,
M = X ⊕A′ ⊕A1

′′ ⊕B′, as required. �

Theorem 3.2. Let M = M1 ⊕ M2, where M1 and M2 are CLS-modules. If

M1 and M2 are relatively ojective, then M is a CLS-module.

Proof. Let X be an S -closed submodule of M . If X ∩ M1 = 0, then X is a
direct summand of M by Lemma 3.1. Let X ∩ M1 6= 0. Then X ∩ M1 is a
direct summand of M1. Write M1 = (X ∩M1)⊕M ′

1,M
′

1 ≤ M1. If X ∩M2 = 0,
then the result follows by Lemma 3.1. Let X ∩ M2 6= 0. Then X ∩ M2 is
a direct summand of M2. Write M2 = (X ∩ M2) ⊕ M ′

2,M
′

2 ≤ M2. Then
X = (X ∩M1)⊕ (X ∩M2)⊕ (X ∩ (M ′

1 ⊕M ′

2)). Note that M ′

1 and M ′

2 are CS-
modules and M ′

1 and M ′

2 are relatively ojective, so M ′

1 ⊕M ′

2 are a CS-module
by [6, Theorem 7]. Hence X ∩ (M ′

1 ⊕M ′

2) is a direct summand of M ′

1 ⊕ M ′

2.
Therefore, M is a CLS-module, as desired. �

Corollary 3.3 ([8, Theorem 10]). Let R be a ring and M a right R-module

such that M = M1 ⊕M2 ⊕ · · · ⊕Mn is a finite direct sum of relatively injective

modules Mi, 1 ≤ i ≤ n. Then M is a CLS-module if and only if Mi is a

CLS-module for each 1 ≤ i ≤ n.

Let M1 and M2 be modules such that M = M1 ⊕ M2. Recall that M1 is
M2-ejective [1] if and only if for every submodule K of M with K ∩ M1 = 0
there exists a submodule M3 of M such that M = M1⊕M3 and K∩M3 ≤e K.

Lemma 3.4. Let A1 be a direct summand of A and B1 a direct summand of

B. If A is B-ejective, then A1 is B1-ejective.

Proof. Write M = A ⊕ B, A = A1 ⊕ A2 and B = B1 ⊕ B2. First we prove
that A1 is B-ejective. Write N = A1 ⊕ B. Let X be a submodule of N with
X ∩A1 = 0. Then X ∩A = 0. Since A is B-ejective, there is a submodule C of
M such that M = A⊕C and X ∩ C ≤e X . Hence N = A1 ⊕ (N ∩ (A2 ⊕ C)).
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Clearly, X ∩ (N ∩ (A2 ⊕C)) ≤e X . Therefore, A1 is B-ejective. Next we prove
that A is B1-ejective. Write L = A ⊕ B1. Let Y be a submodule of L with
Y ∩ A = 0. Since A is B-ejective, there exists a submodule D of M such that
M = A⊕D and D∩Y ≤e Y . Then L = A⊕(L∩D). Clearly, Y ∩(L∩D) ≤e Y .
Therefore, A is B1-ejective. Thus A1 is B1-ejective. �

Theorem 3.5. Let M = M1 ⊕ M2, where M1 and M2 are CLS-modules. If

M1 is M2-ejective, then M is a CLS-module.

Proof. Let N be an S -closed submodule of M . If N ∩ M1 = 0, then M1 is
nonsingular. Since M1 is M2-ejective, there is a submodule M3 of M such
that M = M1 ⊕ M3 and N ∩ M3 ≤e N . Note that N/(N ∩ M3) is both
singular and nonsingular. Hence N = N ∩ M3. Since M3

∼= M2, M3 is a
CLS-module. Clearly, M3/N is nonsingular. Then N is a direct summand
of M . Let N ∩ M1 6= 0. Then N ∩ M1 is a direct summand of M1. Write
M1 = (N ∩M1)⊕M ′

1,M
′

1 ≤ M1. Similarly, M2 = (N ∩M2)⊕M ′

2,M
′

2 ≤ M2.
Then N = (N∩M1)⊕(N∩M2)⊕(N∩(M ′

1⊕M ′

2)). Since M1 is M2-ejective, M
′

1

is M ′

2-ejective by Lemma 3.4. Note that M ′

1 and M ′

2 are G -extending modules.
By [1, Theorem 3.1], M ′

1⊕M ′

2 is G -extending. Hence N ∩(M ′

1⊕M ′

2) is a direct
summand of M ′

1 ⊕M ′

2. Therefore, M is a CLS-module, as desired. �

Corollary 3.6 ([8, Theorem 9]). Let M = M1 ⊕M2, where M1 and M2 are

CLS-modules. If M1 is M2-injective, then M is a CLS-module.

Corollary 3.7. Let M = M1 ⊕ M2 ⊕ · · · ⊕ Mn be a finite direct sum. If

Mi is Mj-ejective for all j > i and each Mi is a CLS-module, then M is a

CLS-module.

Proof. By analogy with the proof of [1, Corollary 3.2]. �

Corollary 3.8. Let M = M1 ⊕M2. Then

(i) If M1 is injective, then M is a CLS-module if and only if M2 is a CLS-

module.

(ii) If M1 is a CLS-module and M2 is semisimple, then M is a CLS-module.

Corollary 3.9. A module M is a CLS-module if and only if M = Z2(M) ⊕
M ′,M ′ ≤ M , where Z2(M) and M ′ are CLS-modules.

Proof. Let M be a CLS-module. Then M = Z2(M)⊕M ′,M ′ ≤ M . By Lemma
2.1, Z2(M) and M ′ are CLS-modules. Conversely, if M = Z2(M)⊕M ′,M ′ ≤
M , then M ′ is Z2(M)-injective. Now the result follows by Theorem 3.5. �

Corollary 3.10. Let M = M1 ⊕M2, where M1 and M2 are CS-modules. If

M is nonsingular and M1 is M2-ejective, then M is a CS-module.

Proof. By Proposition 2.7 and Theorem 3.5. �

Corollary 3.11. Let M = M1⊕M2 be a direct sum of CS-modules M1 and M2,

where M2 is nonsingular. If M1 is M2-ejective and Z2(M1) is M2-injective,

then M is a CS-module.
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Proof. By analogy with the proof of [8, Corollary 11]. �

Corollary 3.12 ([4, Theorem 4]). Let M = M1 ⊕M2 be a direct sum of CS-

modules M1 and M2, where M2 is nonsingular. If M1 is M2-injective, then M
is a CS-module.

Corollary 3.13. Let M = M1 ⊕M2 be a direct sum of CS-modules M1 and

M2. If M1 is M2-ejective, Z2(M1) is M2-injective and Z2(M2) is M1-injective,

then M is a CS-module if and only if Z2(M) is a CS-module.

Proof. Let Z2(M) be a CS-module. Then M = Z2(M1)⊕Z2(M1)⊕M ′

1 ⊕M ′

2,
where M ′

1 ≤ M1 and M ′

2 ≤ M2. By [6, Theorem 1], Z2(M1) is M
′

1-injective and
Z2(M2) is M ′

2-injective. Then Z2(M) is M ′

1 ⊕M ′

2-injective. Since M1 is M2-
ejective, M ′

1⊕M ′

2 is a CS-module by Corollary 3.10. Hence M is a CS-module
by [6, Theorem 1]. �

Corollary 3.14. Let M = M1 ⊕M2 be a direct sum of CS-modules M1 and

M2 such that M1 is M2-injective and Z2(M2) is M1-injective. Then M is a

CS-module if and only if Z2(M) is a CS-module.

We close this paper with the following.
A. Tercan [8, Corollary 13] showed that if a module M = M1⊕M2 where M1

and M2 are CS-modules such that M1 is M2-injective, then M is a CS-module
if and only if Z2(M) is a CS-module. The following example shows that this
claim is not true.

Example 3.15. Let R = Z and MZ = Q ⊕ Zpn(n ≥ 2, p = prime). We
know that Q is Zpn -injective and Q, Zpn are uniform modules. Following by
[1, Example 3.4], M is not CS. Next we show that Z2(M) is CS. Since QZ is
nonsingular, it is easy to see that Z2(M) = Z2(Zpn). Since Zpn is CS, Z2(Zpn),
as a direct summand of Zpn , is CS.
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