• 제목/요약/키워드: Lorentzian manifolds

검색결과 45건 처리시간 0.024초

Some Results on Null Hypersurfaces in (LCS)-manifolds

  • Ssekajja, Samuel
    • Kyungpook Mathematical Journal
    • /
    • 제59권4호
    • /
    • pp.783-795
    • /
    • 2019
  • We prove that a Lorentzian concircular structure (LCS)-manifold does not admit any null hypersurface which is tangential or transversal to its characteristic vector field. Due to the above, we focus on its ascreen null hypersurfaces and show that such hypersurfaces admit a symmetric Ricci tensor. Furthermore, we prove that there are no totally geodesic ascreen null hypersurfaces of a conformally flat (LCS)-manifold.

LORENTZIAN MANIFOLDS: A CHARACTERIZATION WITH SEMICONFORMAL CURVATURE TENSOR

  • De, Uday Chand;Dey, Chiranjib
    • 대한수학회논문집
    • /
    • 제34권3호
    • /
    • pp.911-920
    • /
    • 2019
  • In this paper we characterize semiconformally flat spacetimes and a spacetime with harmonic semiconformal curvature tensor. At first in a semiconformally flat perfect fluid spacetime we obtain a state equation and prove that in particular for dimension n = 4, the spacetime represents a model for incoherent radiation. Next we prove that perfect fluid spacetime with harmonic semiconformal curvature tensor is of Petrov type I, D or O and the spacetime is a GRW spacetime. As a consequence we obtain several corollaries.

YAMABE AND RIEMANN SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS

  • Chidananda, Shruthi;Venkatesha, Venkatesha
    • 대한수학회논문집
    • /
    • 제37권1호
    • /
    • pp.213-228
    • /
    • 2022
  • In the present paper, we aim to study Yamabe soliton and Riemann soliton on Lorentzian para-Sasakian manifold. First, we proved, if the scalar curvature of an 𝜂-Einstein Lorentzian para-Sasakian manifold M is constant, then either 𝜏 = n(n-1) or, 𝜏 = n-1. Also we constructed an example to justify this. Next, it is proved that, if a three dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton for V is an infinitesimal contact transformation and tr 𝜑 is constant, then the soliton is expanding. Also we proved that, suppose a 3-dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton, if tr 𝜑 is constant and scalar curvature 𝜏 is harmonic (i.e., ∆𝜏 = 0), then the soliton constant λ is always greater than zero with either 𝜏 = 2, or 𝜏 = 6, or λ = 6. Finally, we proved that, if an 𝜂-Einstein Lorentzian para-Sasakian manifold M represents a Riemann soliton for the potential vector field V has constant divergence then either, M is of constant curvature 1 or, V is a strict infinitesimal contact transformation.

SOME NOTES ON LP-SASAKIAN MANIFOLDS WITH GENERALIZED SYMMETRIC METRIC CONNECTION

  • Bahadir, Oguzhan;Chaubey, Sudhakar K.
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.461-476
    • /
    • 2020
  • The present study initially identify the generalized symmetric connections of type (α, β), which can be regarded as more generalized forms of quarter and semi-symmetric connections. The quarter and semi-symmetric connections are obtained respectively when (α, β) = (1, 0) and (α, β) = (0, 1). Taking that into account, a new generalized symmetric metric connection is attained on Lorentzian para-Sasakian manifolds. In compliance with this connection, some results are obtained through calculation of tensors belonging to Lorentzian para-Sasakian manifold involving curvature tensor, Ricci tensor and Ricci semi-symmetric manifolds. Finally, we consider CR-submanifolds admitting a generalized symmetric metric connection and prove many interesting results.

SOME METRIC ON EINSTEIN LORENTZIAN WARPED PRODUCT MANIFOLDS

  • Lee, Soo-Young
    • Korean Journal of Mathematics
    • /
    • 제27권4호
    • /
    • pp.1133-1147
    • /
    • 2019
  • In this paper, let M = B×f2 F be an Einstein Lorentzian warped product manifold with 2-dimensional base. We study the geodesic completeness of some metric with constant curvature. First of all, we discuss the existence of nonconstant warping functions on M. As the results, we have some metric g admits nonconstant warping functions f. Finally, we consider the geodesic completeness on M.