YAMABE AND RIEMANN SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS

Shruthi Chidananda and Venkatesha Venkatesha

Abstract

In the present paper, we aim to study Yamabe soliton and Riemann soliton on Lorentzian para-Sasakian manifold. First, we proved, if the scalar curvature of an η-Einstein Lorentzian para-Sasakian manifold M is constant, then either $\tau=n(n-1)$ or, $\tau=n-1$. Also we constructed an example to justify this. Next, it is proved that, if a three dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton for V is an infinitesimal contact transformation and $\operatorname{tr} \varphi$ is constant, then the soliton is expanding. Also we proved that, suppose a 3-dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton, if $\operatorname{tr} \varphi$ is constant and scalar curvature τ is harmonic (i.e., $\Delta \tau=0$), then the soliton constant λ is always greater than zero with either $\tau=2$, or $\tau=6$, or $\lambda=6$. Finally, we proved that, if an η-Einstein Lorentzian para-Sasakian manifold M represents a Riemann soliton for the potential vector field V has constant divergence then either, M is of constant curvature 1 or, V is a strict infinitesimal contact transformation.

1. Introduction

It is well known that, the notion of Yamabe flow was first introduced by Richard Hamiliton at the same time as Ricci flow [11]. A Yamabe flow is defined as a tool for constructing metrics of constant scalar curvature. On a smooth pseudo Riemannian manifold, Yamabe flow is defined as the evaluation of the metric g_{0} in time t to $g=g(t)$ through the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} g(t)=-\tau g, \quad g(0)=g_{0} \tag{1.1}
\end{equation*}
$$

where τ is the scalar curvature of the metric $g(t)$. If a pseudo-Riemannian manifold M holds the relation

$$
\begin{equation*}
£_{V} g=2(\tau-\lambda) g \tag{1.2}
\end{equation*}
$$

[^0]for a vector field V on M and a constant λ, then M is said to have Yamabe soliton. Like the Ricci soliton [17, 18], the Yamabe soliton is said to be shrinking, steady or expanding according as $\lambda<0, \lambda=0$, or $\lambda>0$, respectively.

In the past two decades, many authors have studied Yamabe soliton on various types of manifolds $[1,5,7,25,27]$. Recently, Venkatesha et al., studied Yamabe soliton on three dimensional contact manifolds [24] and Ghosh studied Yamabe soliton on Kenmotsu manifold [10].

The notion of Ricci flow is generalized to the concept of Riemann flow (see [21], [22]). As an analogous to the Ricci flow, a Riemann flow has been introduced by Hiriča and Udrişte [12] as a natural extension of the Ricci flow to a non-linear PDE and the metric g as a solution of the PDE. A Riemann soliton is defined as a self similar solution to the Riemann flow and is defined as

$$
\begin{equation*}
\frac{\partial}{\partial t} G(t)=-2 R(g(t)), \quad t \in[0, I] \tag{1.3}
\end{equation*}
$$

where R denotes the Riemannian curvature tensor associated with metric g, $G=g \boxtimes g$ and \circledR is Kulkarni-Nomizu product. If C and D are two (0,2)tensors, then $C \not(D$ is given by

$$
\begin{align*}
(C ® D)(W, X, Y, Z)= & C(W, Z) D(X, Y)+C(X, Y) D(W, Z) \\
& -C(W, Y) D(X, Z)-C(X, Z) D(W, Y) . \tag{1.4}
\end{align*}
$$

A pseudo-Riemannian manifold M is said to admit a Riemann soliton (g, V), if there exist a vector field V and a constant λ on M such that

$$
\begin{equation*}
R+\frac{1}{2}\left\{\lambda g \bowtie g+g \bowtie £_{V} g\right\}=0 \tag{1.5}
\end{equation*}
$$

where $£_{V}$ is the Lie-derivative along V. In (1.5), if $V=D f$, where f is some smooth function and D represents the gradient operator of g, then the soliton is called a gradient Riemann soliton and is given by

$$
\begin{equation*}
2 R+\lambda g \oslash g+2 g \bowtie \nabla^{2} f=0 \tag{1.6}
\end{equation*}
$$

By Kulkarni-Nomizu product defined in (1.4) the soliton equation (1.5) becomes

$$
\begin{align*}
& 2 R(W, X, Y, Z)+2 \lambda\{g(X, Y) g(Z, W)-g(Y, W) g(X, Z)\} \\
& +\left\{g(W, Z)\left(£_{V} g\right)(X, Y)+g(X, Y)\left(£_{V} g\right)(W, Z)\right. \\
& \left.-g(W, Y)\left(£_{V} g\right)(X, Z)-g(X, Z)\left(£_{V} g\right)(W, Y)\right\}=0 \tag{1.7}
\end{align*}
$$

for all $W, X, Y, Z \in \mathcal{X}(M)$.
Moreover, contraction of the above expression over W, Z gives

$$
\begin{align*}
& 2 S(X, Y)+2(n-1) \lambda g(X, Y)+(n-2)\left(£_{V} g\right)(X, Y) \\
& +2(\operatorname{div} V) g(X, Y)=0 \tag{1.8}
\end{align*}
$$

Similar to the Yamabe soliton, the Riemann soliton is steady, shrinking or expanding according as $\lambda=0, \lambda<0$ or $\lambda>0$, respectively. In [8], [23], Naik et al., studied geometric properties of Riemann soliton in contact manifolds and in almost Kenmotsu manifolds. Further, in [4], we have studied Riemann soliton
on non-Sasakian (κ, μ)-contact manifolds. In [6], De et al., studied an almost Riemann soliton in a non-cosymplectic normal almost contact metric manifold. Further, Blaga et al., considered Riemann soliton in (α, β)-contact manifolds and gave some important geometric aspects [2]. This literature survey motivates us to study Yamabe and Riemann soliton on Lorentzian para-Sasakian manifolds.

The structure of this paper is as follows: After the accumulation of some basic results and formulas in Section 2, we show some non-existence curvature conditions on Lorentzian para-Sasakian manifold M. Also, we show that, if M is an η-Einstein and τ is constant on M, then either $\tau=n(n-1)$, or $\tau=n-1$. Example has been constructed to justify this. In Section 3, we consider studying the Yamabe soliton and we establish a result that, if a three dimensional Lorentzian para-Sasakian metric g represents a Yamabe soliton for an infinitesimal contact transformation V with constant $\operatorname{tr} \varphi$, then $\lambda>$ 0 . Further, we prove that, if a three dimensional Lorentzian para-Sasakian manifold with constant $\operatorname{tr} \varphi$ and $\Delta \tau=0$ admits a Yamabe soliton, then the soliton is expanding. Section 4, is devoted to study Riemann soliton on M under certain conditions, such as, (1) M is an η-Einstein and divV is constant, (2) for $V=\xi$, (3) $V=D f$ and $\operatorname{div} V$ is constant.

2. Preliminaries

The Lorentzian para-Sasakian structure on a differentiable manifold M was first introduced by K. Matsumoto in 1989 and is defined as follows [13]:

An n-dimensional smooth manifold M together with 1-form η, a $(1,1)$ tensor φ, a unit vector field ξ and a Lorentzian metric g is said to have a Lorentzian para-Sasakian structure if it holds the following conditions:

$$
\begin{align*}
\varphi \xi & =0, \quad \eta(\xi)=-1, \quad \varphi^{2} X=X+\eta(X) \xi \tag{2.1}\\
g(\varphi X, \varphi Y) & =g(X, Y)+\eta(X) \eta(Y) \tag{2.2}\\
\left(\nabla_{X} \varphi\right) Y & =g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.3}\\
\nabla_{X} \xi & =\varphi X \tag{2.4}
\end{align*}
$$

From the definition, it is known that

$$
g(X, \xi)=\eta(X)
$$

for all X belongs to $\mathcal{X}(M)$. And so the vector field ξ is time like, i.e.,

$$
g(\xi, \xi)=-1
$$

and φ is symmetric with respect to the metric g. Moreover, the geometric aspects of the Reeb vector field ξ have been exclusively studied by Wang in [26]. A smooth connected manifold M together with a Lorentzian para-Sasakian structure is said to be a Lorentzian para-Sasakian manifold. In recent years, the Lorentzian para-Sasakian manifold has been studied by many authors, [14-
$16,19,20]$. So we have the following expressions

$$
\begin{align*}
R(X, Y) \xi & =\eta(Y) X-\eta(X) Y \tag{2.5}\\
R(\xi, Y) Z & =g(Y, Z) \xi+\eta(Z) Y+2 \eta(Y) \eta(Z) \xi \tag{2.6}\\
Q \xi & =(n-1) \xi \tag{2.7}
\end{align*}
$$

Moreover, the Reeb vector field ξ is never a Killing, i.e.,

$$
\begin{equation*}
\left(£_{\xi} g\right)(Y, Z)=2 g(Z, \varphi Y) \tag{2.8}
\end{equation*}
$$

as φ is linear and the rank of φ is $n-1$, so $£_{\xi} g \neq 0$ for all vector fields on $\mathcal{X}(M)$. Since, φ is symmetric. Therefore, we have

$$
\operatorname{div} \xi=\operatorname{tr} \varphi
$$

where $d i v$ and $t r$ stand for divergence and trace, respectively.
Definition 2.1. A pseudo-Riemannian manifold M is said to be an η-Einstein if the Ricci operator Q satisfies

$$
\begin{equation*}
g(Q X, Y)=\alpha g(X, Y)+\beta(\eta \otimes \eta)(X, Y) \tag{2.9}
\end{equation*}
$$

where α, β are the smooth functions on M.
Moreover, from [3], the expression of Q for an η-Einstein Lorentzian paraSasakian manifold is given by

$$
\begin{equation*}
Q X=\left\{\frac{\tau}{n-1}-1\right\} X+\left\{\frac{\tau}{n-1}-n\right\} \eta(X) \xi \tag{2.10}
\end{equation*}
$$

If M is a three-dimensional Lorentzian para-Sasakian manifold, then the expression of Q is given as

$$
\begin{equation*}
Q X=\left\{\frac{\tau}{2}-1\right\} X+\left\{\frac{\tau}{2}-3\right\} \eta(X) \xi \tag{2.11}
\end{equation*}
$$

Definition 2.2. On a pseudo-Riemannian manifold M, any vector field V is said to be an infinitesimal contact transformation if it satisfies

$$
\begin{equation*}
£_{V} \eta=\sigma \eta \tag{2.12}
\end{equation*}
$$

where σ is the smooth function on M. If $\sigma=0$, then V is called to be strict.
From [9], we have:
Lemma 2.3. On an n-dimensional pseudo-Riemannian manifold M, if there exists a vector field V such that $£_{V} g=2 \rho g$, where ρ is a smooth function, then the following equations hold true on M

$$
\begin{align*}
\left(£_{V} S\right)(X, Y) & =g(X, Y)(\Delta \rho)-(n-2) g\left(\nabla_{X} D \rho, Y\right), \tag{2.13}\\
£_{V} \tau & =-2 \rho \tau+2(n-1) \Delta \rho, \tag{2.14}
\end{align*}
$$

where $\Delta \rho=-\operatorname{div} D \rho$. If $\rho=\tau-\lambda$, then $\Delta \rho=\Delta \tau=-\operatorname{div} D \tau$.

From Yano [28], we deduce the following computational formulas

$$
\begin{equation*}
2 g\left(\left(£_{V} \nabla\right)(X, Y), Z\right)=\left(\nabla_{X} £_{V} g\right)(Y, Z)+\left(\nabla_{Y} £_{V} g\right)(X, Z) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(£_{V} R\right)(X, Y) Z=\left(\nabla_{X} £_{V} \nabla\right)(Y, Z)-\left(\nabla_{Y} £_{V} \nabla\right)(X, Z) . \tag{2.16}
\end{equation*}
$$

Proposition 2.4. A Lorentzian para-Sasakian manifold M for $\operatorname{dim} M>1$, never has the following curvature conditions:

- η-recurrent Ricci tensor.
- cyclic η-recurrent Ricci tensor.

Proof. Let M be an n-dimensional Lorentzian para-Sasakian manifold and the dimension $n>1$.

- If suppose the Ricci curvature tensor S on M satisfies $\left(\nabla_{X} S\right)(Y, Z)=\eta(X) S(Y, Z)$ (i.e., Ricci tensor is η-recurrent) for all $X, Y, Z \in \mathcal{X}(M)$.
By taking $X=Y=\xi$ in this expression and from (2.7), we obtain

$$
\begin{equation*}
(n-1) \eta(Z)=0 \tag{2.17}
\end{equation*}
$$

this shows that $n=1$. Which is a contradiction.
Similarly,

- If S is cyclic η-recurrent on M, then
$\left(\nabla_{Y} S\right)(X, Z)+\left(\nabla_{Z} S\right)(X, Y)+\left(\nabla_{X} S\right)(Y, Z)=\eta(Y) S(X, Z)+\eta(Z) S(X, Y)$

$$
\begin{equation*}
+\eta(X) S(Y, Z) \tag{2.18}
\end{equation*}
$$

In this, by taking $Y=Z=\xi$, we get

$$
\begin{equation*}
-3(n-1) \eta(X)=0 \tag{2.19}
\end{equation*}
$$

which leads to the contradiction as $n>1$. Hence the result is proved.
Lemma 2.5. On a Lorentzian para-Sasakian manifold, the following condition holds true:

$$
\begin{equation*}
\left(\nabla_{\xi} Q\right) Y=2(\operatorname{tr} \varphi) \varphi^{2} Y-2 \varphi Q Y \tag{2.20}
\end{equation*}
$$

Proof. Taking covariant derivative of (2.8) along the direction of X and from (2.3) we deduce
(2.21) $\left(\nabla_{X} £_{\xi} g\right)(Y, Z)=2\{g(X, Y) \eta(Z)+\eta(Y) g(X, Z)+2 \eta(X) \eta(Y) \eta(Z)\}$.

In view of (2.15) and (2.21), we find

$$
\begin{equation*}
\left(£_{\xi} \nabla\right)(Y, Z)=2 g(\varphi Y, \varphi Z) \xi \tag{2.22}
\end{equation*}
$$

Now, in (2.22), with the help of (2.3) and (2.4), we infer

$$
\begin{align*}
\left(\nabla_{X} £_{\xi} \nabla\right)(Y, Z)= & 2 g(\varphi Y, \varphi Z) \varphi X+2 \eta(Y) g(X, \varphi Z) \xi \\
& +2 \eta(Z) g(X, \varphi Y) \xi . \tag{2.23}
\end{align*}
$$

By virtue of this, we obtain

$$
\begin{align*}
\left(\nabla_{Y} £_{\xi} \nabla\right)(X, Z)= & 2 g(\varphi X, \varphi Z) \varphi Y+2 \eta(X) g(Y, \varphi Z) \xi \\
& +2 \eta(Z) g(X, \varphi Y) \xi . \tag{2.24}
\end{align*}
$$

On substituting the foregoing relations in (2.16) and then contracting (2.16) over X with respect to an orthonormal basis, gives

$$
\begin{equation*}
\left(£_{\xi} S\right)(Y, Z)=2 g(\varphi Y, \varphi Z)(\operatorname{tr} \varphi) . \tag{2.25}
\end{equation*}
$$

On the other hand, computing the left hand side of (2.25) by using (2.4) leads to

$$
\begin{equation*}
\left(£_{\xi} S\right)(Y, Z)=g\left(\left(\nabla_{\xi} Q\right) Y, Z\right)+2 g(\varphi Q Y, Z) \tag{2.26}
\end{equation*}
$$

Hence, by equating (2.25) with (2.26) we obtain (2.20). This finishes the proof.

Lemma 2.6. On an η-Einstein Lorentzian para-Sasakian manifold M we have

$$
\begin{equation*}
\xi \tau=-2\left(\frac{\tau}{n-1}-n\right)(\operatorname{tr} \varphi) \tag{2.27}
\end{equation*}
$$

Proof. Since M is η-Einstein, covariant derivative of equation (2.10) leads to obtain

$$
\left(\nabla_{X} Q\right) Y=\left(\frac{X \tau}{n-1}\right) Y+\left(\frac{X \tau}{n-1}\right) \eta(Y) \xi+\left(\frac{\tau}{n-1}-n\right)\{g(X, \varphi Y) \xi
$$

$$
+\eta(Y) \varphi X\}
$$

Hence, fetching $Y=\xi$ in the above relation and then taking contraction over X gives the condition (2.27).

Theorem 2.7. Let τ be the scalar curvature of an n-dimensional η-Einstein Lorentzian para-Sasakian manifold M. If τ is constant, then either $\tau=n(n-1)$ with $(\operatorname{tr} \varphi)= \pm(n-1)$, or $\tau=(n-1)$ with $(\operatorname{tr} \varphi)=0$.

Proof. Suppose τ is constant on M, then $\xi \tau=0$ and from (2.27), we get

$$
\begin{equation*}
(\tau-n(n-1))(\operatorname{tr} \varphi)=0 \tag{2.29}
\end{equation*}
$$

From (2.28) we get $\left(\nabla_{\xi} Q\right) X=0$, which in (2.20) for $Y=\varphi Y$ implies

$$
\begin{equation*}
(\operatorname{tr} \varphi) \varphi Y-Q \varphi^{2} Y=0 \tag{2.30}
\end{equation*}
$$

Contracting this over Y and with the help of (2.10), we find

$$
\begin{equation*}
(\operatorname{tr} \varphi)^{2}-\tau+(n-1)=0 \tag{2.31}
\end{equation*}
$$

On solving (2.31) by using (2.29) we obtain, either $\tau=(n-1)$ with $(\operatorname{tr} \varphi)=0$, or $\tau=n(n-1)$ with $(\operatorname{tr} \varphi)= \pm(n-1)$. Hence the result is proved.

From the above theorem, we can also state that:

Theorem 2.8. Let M be an n-dimensional Lorentzian para-Sasakian manifold and the scalar curvature τ is constant on M. If τ is neither $n(n-1)$ nor $(n-1)$, then M never be an η-Einstein manifold.
Example 2.9. Here we construct the 5 -dimensional Lorentzian para-Sasakian manifold M. We consider $M=\left\{(u, v, w, x, y) \in \mathbb{R}^{5}\right\}$, where (u, v, w, x, y) are the standard coordinates in \mathbb{R}^{5}.

Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ be the basis for M and the Lorentzian metric g is defined as the

$$
g\left(v_{i}, v_{j}\right)= \begin{cases}0 & \text { for } \quad i \neq j, \tag{2.32}\\ 1 & \text { for } \quad i=j \text { and } i \neq 3, \\ -1 & \text { for } \quad i=j=3 .\end{cases}
$$

Let ∇ be the Levi-Civita connection corresponding to g and we have

$$
\begin{gathered}
{\left[v_{1}, v_{2}\right]=0, \quad\left[v_{1}, v_{3}\right]=-v_{1}, \quad\left[v_{1}, v_{4}\right]=0,} \\
{\left[v_{1}, v_{5}\right]=v_{1}, \quad\left[v_{2}, v_{3}\right]=-v_{2}, \quad\left[v_{2}, v_{4}\right]=v_{2},} \\
{\left[v_{2}, v_{5}\right]=v_{2}, \quad\left[v_{3}, v_{4}\right]=v_{4}, \quad\left[v_{3}, v_{5}\right]=v_{5}, \quad\left[v_{4}, v_{5}\right]=-v_{5} .}
\end{gathered}
$$

Let the $(1,1)$ tensor field φ is defined by

$$
\begin{equation*}
\varphi v_{1}=-v_{1}, \quad \varphi v_{2}=-v_{2}, \quad \varphi v_{3}=0, \quad \varphi v_{4}=-v_{4}, \quad \varphi v_{5}=-v_{5} \tag{2.33}
\end{equation*}
$$

Let η be the 1 -form defined by $\eta(X)=g\left(X, v_{3}\right)$ for any vector field X on $\mathcal{X}(M)$. Then, by the linearity of φ and g, we find

$$
\begin{align*}
\eta\left(v_{3}\right) & =-1, \tag{2.34}\\
\varphi^{2} & =I+\eta \otimes \xi \tag{2.35}\\
g(\varphi \cdot, \varphi \cdot) & =(g+\eta \otimes \eta)(\cdot, \cdot) . \tag{2.36}
\end{align*}
$$

By the Koszul's formula, we find
$\nabla_{v_{1}} v_{1}=-v_{3}-v_{5}, \quad \nabla_{v_{1}} v_{2}=0, \quad \nabla_{v_{1}} v_{3}=-v_{1}, \quad \nabla_{v_{1}} v_{4}=0, \quad \nabla_{v_{1}} v_{5}=v_{1}$,
$\nabla_{v_{2}} v_{1}=0, \quad \nabla_{v_{2}} v_{2}=-v_{3}-v_{4}-v_{5}, \quad \nabla_{v_{2}} v_{3}=-v_{2}, \quad \nabla_{v_{2}} v_{4}=v_{2}, \quad \nabla_{v_{2}} v_{5}=v_{2}$,
$\nabla_{v_{3}} v_{1}=0, \quad \nabla_{v_{3}} v_{2}=0, \quad \nabla_{v_{3}} v_{3}=0, \quad \nabla_{v_{3}} v_{4}=0, \quad \nabla_{v_{3}} v_{5}=0$,
$\nabla_{v_{4}} v_{1}=0, \quad \nabla_{v_{4}} v_{2}=0, \quad \nabla_{v_{4}} v_{3}=-v_{4}, \quad \nabla_{v_{4}} v_{4}=-v_{3}, \quad \nabla_{v_{4}} v_{5}=0$,
$\nabla_{v_{5}} v_{1}=0, \quad \nabla_{v_{5}} v_{2}=0, \quad \nabla_{v_{5}} v_{3}=-v_{5}, \quad \nabla_{v_{5}} v_{4}=v_{5}, \quad \nabla_{v_{5}} v_{5}=-v_{3}-v_{4}$.
Hence, we can conclude that $\left(\varphi, v_{3}, \eta, g\right)$ defines a Lorentzian para-Sasakian structure on M and so M is a Lorentzian para-Sasakian manifold. Let R be the Riemannian curvature and S is the Ricci tensor and by the above relations, we evaluated the following conditions
$R\left(v_{1}, v_{2}\right) v_{2}=0, \quad R\left(v_{1}, v_{3}\right) v_{3}=-v_{1}, \quad R\left(v_{1}, v_{4}\right) v_{4}=v_{1}, \quad R\left(v_{1}, v_{5}\right) v_{5}=0$,
$R\left(v_{2}, v_{3}\right) v_{3}=-v_{2}, \quad R\left(v_{2}, v_{4}\right) v_{4}=0, \quad R\left(v_{2}, v_{5}\right) v_{5}=-v_{2}, \quad R\left(v_{3}, v_{4}\right) v_{4}=v_{3}$,
$R\left(v_{3}, v_{5}\right) v_{5}=v_{3}+v_{4}, \quad R\left(v_{4}, v_{5}\right) v_{5}=0$.

And from the above relations, we obtain

$$
\begin{array}{ll}
S\left(v_{1}, v_{1}\right)=2, & S\left(v_{2}, v_{2}\right)=0, \quad S\left(v_{3}, v_{3}\right)=-4 \\
S\left(v_{4}, v_{4}\right)=2, & S\left(v_{5}, v_{5}\right)=0 .
\end{array}
$$

Since, M is 5 -dimensional and the scalar curvature is 8 . Moreover, $S\left(v_{1}, v_{1}\right) \neq$ $S\left(v_{2}, v_{2}\right)$ shows that M is never an η-Einstein. Hence this verifies Theorem 2.8.
Example 2.10. Let us consider a manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}\right\}$ and the orthonormal basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ on M, with the Lorentzian metric g satisfying

$$
\begin{aligned}
& g\left(u_{i}, u_{j}\right)=0 \quad \text { for } \quad i \neq j, \\
& g\left(u_{1}, u_{1}\right)=g\left(u_{2}, u_{2}\right)=1 \\
& g\left(u_{3}, u_{3}\right)=-1
\end{aligned}
$$

Define 1-form η and the vector field ξ by

$$
\eta(X)=g\left(X, u_{3}\right), \quad \xi=u_{3}
$$

Let ∇ be the Levi-Civita connection corresponding to g and is defined by

$$
\left[u_{1}, u_{2}\right]=0, \quad\left[u_{1}, u_{3}\right]=-u_{1}, \quad\left[u_{2}, u_{3}\right]=-u_{2}
$$

and the tensor field φ is defined by

$$
\varphi u_{1}=-u_{1}, \quad \varphi u_{2}=-u_{2}, \quad \varphi u_{3}=0
$$

Use of Koszul's formula gives the following relations

$$
\begin{array}{lll}
\nabla_{u_{1}} u_{1}=-u_{3}, & \nabla_{u_{1}} u_{2}=0, & \nabla_{u_{1}} u_{3}=-u_{1}, \\
\nabla_{u_{2}} u_{1}=0, & \nabla_{u_{2}} u_{2}=-u_{3}, & \nabla_{u_{2}} u_{3}=-u_{2}, \\
\nabla_{u_{3}} u_{1}=0, & \nabla_{u_{3}} u_{2}=0, & \nabla_{u_{3}} u_{3}=0 .
\end{array}
$$

From the above relations, it is clear that $\left(\nabla_{X} \varphi\right) Y=g(X, Y) \xi+\eta(Y) X+$ $2 \eta(X) \eta(Y) \xi$ and $\nabla_{X} \xi=\varphi X$ for any vector fields X, Y. Hence, the defined structure $\left(\varphi, \xi=u_{3}, \eta, g\right)$ is a Lorentzian para-Sasakian structure on M. Then the corresponding Riemannian curvature tensor and Ricci tensor have been calculated as follows:

$$
\begin{array}{lll}
R\left(u_{1}, u_{2}\right) u_{2}=u_{1}, & R\left(u_{1}, u_{3}\right) u_{3}=-u_{1}, & R\left(u_{2}, u_{1}\right) u_{1}=u_{2} \\
R\left(u_{2}, u_{3}\right) u_{3}=-u_{2}, & R\left(u_{3}, u_{1}\right) u_{1}=u_{3}, & R\left(u_{3}, u_{2}\right) u_{2}=u_{3}
\end{array}
$$

and

$$
\begin{aligned}
& S\left(u_{1}, u_{1}\right)=S\left(u_{2}, u_{2}\right)=2, \quad S\left(u_{3}, u_{3}\right)=-2, \\
& S\left(u_{1}, u_{2}\right)=S\left(u_{1}, u_{3}\right)=S\left(u_{2}, u_{3}\right)=0 .
\end{aligned}
$$

Clearly, the constructed structure (φ, ξ, η, g), for $\xi=u_{3}$ is an Einstein Lorentzian para-Sasakian structure with $\tau=6$ and $\operatorname{tr} \varphi=-2$. This verifies Theorem 2.7.

3. Yamabe soliton

Theorem 3.1. If a Lorentzian para-Sasakian metric g represents a Yamabe soliton, then the scalar curvature τ is constant if and only if V is Killing.

Proof. Suppose M has a constant scalar curvature and g is a Yamabe soliton. Then by equation (1.2) we can deduce that, $\nabla_{X} £_{V} g=0$. And by using this in the computational formula (2.15), we obtain

$$
\begin{equation*}
\left(£_{V} \nabla\right)(Y, Z)=0 \tag{3.1}
\end{equation*}
$$

this implies getting

$$
\begin{equation*}
\left(\nabla_{X} £_{V} \nabla\right)(Y, Z)=0 \tag{3.2}
\end{equation*}
$$

As a result, the preceding condition in (2.16) produces

$$
\begin{equation*}
\left(£_{V} R\right)(X, Y) Z=0 \tag{3.3}
\end{equation*}
$$

Substituting $Y=Z=\xi$ in the previous relation and then tracing the resulting equation with the aid of (1.2), we find

$$
\begin{equation*}
\eta\left(£_{V} \xi\right)=\tau-\lambda=0 \tag{3.4}
\end{equation*}
$$

Therefore, use of this in (1.2) proves that V is Killing.
Conversely, if the soliton vector field V is Killing, then from the expression (1.2), it is obvious that $\tau=\lambda$. Since λ is constant, which means τ is also constant. This completes the proof.

Corollary 3.2. If g is a Lorentzian para-Sasakian metric, then g never satisfies Yamabe equation for $V=\xi$.
Proof. If suppose a Lorentzian para-Sasakian metric g is a Yamabe soliton for $V=\xi$, then the equation (1.2), on (ξ, ξ) gives $\tau-\lambda=0$. Later, this in (1.2) shows ξ is Killing. But, as we know, if ξ is Killing then by the condition (2.8) $\varphi=0$, which is a contradiction. Therefore, V is never a Reeb vector field ξ.

Here we justify the above theorem by the following example:
Example 3.3. In Example 2.9, if manifold M holds Yamabe soliton for $V=$ $\xi=v_{3}$, then, by computing (1.2) on $\left(v_{3}, v_{3}\right)$, we acquire

$$
\begin{equation*}
\left(£_{v_{3}} g\right)\left(v_{3}, v_{3}\right)=2(\lambda-\tau)=0 \tag{3.5}
\end{equation*}
$$

this implies $\tau=\lambda$, at one more time, evaluating (1.2) on $\left(v_{2}, v_{2}\right)$ gives

$$
2 g\left(\nabla_{v_{2}} v_{3}, v_{2}\right)=-2=0
$$

which is a contradiction. Therefore it verifies Corollary 3.2.
Theorem 3.4. Let g be a Lorentzian para-Sasakian metric and it admits Yamabe soliton for V is an infinitesimal contact transformation, if τ is constant in the direction of ξ then V is Killing.

Proof. From Definition 2.2 and from the equation (1.2) we can easily find that

$$
\begin{equation*}
\sigma=(\tau-\lambda) \tag{3.6}
\end{equation*}
$$

and as we know η is closed on M, i.e., $d \eta=0$, therefore applying d on both sides of relation (2.12) provides

$$
\begin{equation*}
(d \sigma \wedge \eta)(X, Y)=0 \tag{3.7}
\end{equation*}
$$

In the above equation for $X=\xi$ we get $Y \sigma=-(\xi \sigma) \eta(Y)$. So σ is constant if $\xi \sigma$ is zero. Since $\xi \tau=0$, then by (3.6), we have $\xi \sigma=0$, which shows σ is constant on M and consequently τ is also constant on M. Therefore, from Theorem 3.1 the proof is completed.

Theorem 3.5. Let M be a three-dimensional Lorentzian para-Sasakian manifold and admits a Yamabe soliton for the potential vector field V, where V is an infinitesimal contact transformation. If the trace of φ is constant, then the soliton is expanding.

Proof. For a 3-dimensional Lorentzian para-Sasakian manifold the expression of Ricci tensor is given by

$$
\begin{equation*}
S=\left\{\frac{\tau}{2}-1\right\} g+\left\{\frac{\tau}{2}-3\right\} \eta \otimes \eta \tag{3.8}
\end{equation*}
$$

Taking the Lie-derivative of the above condition in the direction of V results in the following

$$
\begin{align*}
\left(£_{V} S\right)(Y, Z)= & \left(\frac{£_{V} \tau}{2}\right) g(Y, Z)+\left\{\frac{\tau}{2}-1\right\}\left(£_{V} g\right)(Y, Z)+\left(\frac{£_{V} \tau}{2}\right) \eta(Y) \eta(Z) \\
& +\left\{\frac{\tau}{2}-3\right\}\left(£_{V} \eta \otimes \eta\right)(Y, Z) \tag{3.9}
\end{align*}
$$

We can also have
$g\left(\left(£_{V} Q\right) Y, Z\right)=\left(\frac{£_{V} \tau}{2}\right) g(Y, Z)+\left(\frac{£_{V} \tau}{2}\right) \eta(Y) \eta(Z)+\left\{\frac{\tau}{2}-3\right\}\left\{\eta(Z)\left(£_{V} \eta\right) Y\right.$

$$
\begin{equation*}
\left.+g\left(£_{V} \xi, Z\right) \eta(Y)\right\} \tag{3.10}
\end{equation*}
$$

From equation (1.2), we derive

$$
\begin{equation*}
\left(£_{V} S\right)(Y, Z)-g\left(\left(£_{V} Q\right) Y, Z\right)=2(\tau-\lambda) S(Y, Z) \tag{3.11}
\end{equation*}
$$

As from (1.2), we have $\eta\left(£_{V} \xi\right)=(\tau-\lambda)$. Next, by putting $Y=Z=\xi$ in equation (3.11) and with the help of (3.9) and (3.10) we find that

$$
\begin{equation*}
\left(£_{V} S\right)(\xi, \xi)=-4(\tau-\lambda) \tag{3.12}
\end{equation*}
$$

Since, from (2.13) we have

$$
\begin{equation*}
\left(£_{V} S\right)(\xi, \xi)=-\Delta \tau-g\left(\nabla_{\xi} D \tau, \xi\right) \tag{3.13}
\end{equation*}
$$

On equating (3.12) with (3.13), we obtain

$$
\begin{equation*}
4(\tau-\lambda)=\Delta \tau+\xi(\xi \tau) \tag{3.14}
\end{equation*}
$$

Since V is an infinitesimal contact transformation, thus, from the conditions (2.12) and (1.2), we have that $X \sigma=X \tau=0$ for all X orthogonal to ξ. Later, this implies getting

$$
\begin{equation*}
D \tau=-(\xi \tau) \xi \tag{3.15}
\end{equation*}
$$

Now differentiating this along Y provides

$$
\begin{equation*}
\nabla_{Y} D \tau=-\{Y(\xi \tau)\} \xi-(\xi \tau) \nabla_{Y} \xi \tag{3.16}
\end{equation*}
$$

Further, we proceed with the condition $\operatorname{tr} \varphi=$ constant. If the trace of φ is constant, then from (2.27) we obtain

$$
\begin{equation*}
\xi(\xi \tau)=-(\xi \tau)(\operatorname{tr} \varphi)=(\tau-6)(\operatorname{tr} \varphi)^{2} \tag{3.17}
\end{equation*}
$$

In equation (2.27), the fact that $g(X, D \tau)=0$ for any X orthogonal to ξ enables us to find

$$
\begin{equation*}
X(\xi \tau)=-(X \tau)(\operatorname{tr} \varphi)=0 \tag{3.18}
\end{equation*}
$$

for all X perpendicular to ξ.
Next, tracing (3.16) over Y and then using above relation yields

$$
\begin{equation*}
-\Delta \tau=-\{\xi(\xi \tau)\}-(\xi \tau)(\operatorname{tr} \varphi) \tag{3.19}
\end{equation*}
$$

On substituting (3.17) and (3.19) in (3.14) we get

$$
\begin{equation*}
-4(\tau-\lambda)=-2(\tau-6)(\operatorname{tr} \varphi)^{2}+(\tau-6)(\operatorname{tr} \varphi)^{2} \tag{3.20}
\end{equation*}
$$

differentiating (3.20) along ξ and using (2.27), we have

$$
\begin{equation*}
(\tau-6)\left\{4(\operatorname{tr} \varphi)-(\operatorname{tr} \varphi)^{3}\right\}=0 \tag{3.21}
\end{equation*}
$$

Note that the trace of φ is constant. Therefore, from the above equation, there are three cases that arise: either $\tau=6$, or $(\operatorname{tr} \varphi)=0$, or $(\operatorname{tr} \varphi)^{2}=4$. First case itself proves the result. Next, let us deal with second case, i.e., $(\operatorname{tr} \varphi)=0$, which in (2.27) finds $\xi \tau=0$ and from (2.28) for $n=3$ gives $\left(\nabla_{\xi} Q\right) Y=0$, use of this in (2.20) enables us to find $\tau=2$. Finally, if $(\operatorname{tr} \varphi)^{2}=4$, which in (3.20) finds $\lambda=6$. Hence, by Theorem 3.1 the proof is completed.

Theorem 3.6. Let M be a Lorentzian para-Sasakian manifold of dimension three and admits a Yamabe soliton (g, V, λ). If $\operatorname{tr} \varphi$ is constant and the scalar curvature τ is harmonic, i.e., $\Delta \tau=0$, then the soliton is expanding with either V is Killing, or $\lambda=6$.
Proof. Suppose a three-dimensional Lorentzian para-Sasakian manifold M admits a Yamabe soliton. If $\operatorname{tr} \varphi$ is constant and $\Delta \tau=0$, then from (2.27) we have

$$
\begin{equation*}
\xi(\xi \tau)=(\tau-6)(\operatorname{tr} \varphi)^{2} \tag{3.22}
\end{equation*}
$$

Use of foregoing condition in (3.14) and the harmonic scalar curvature condition provides

$$
\begin{equation*}
4(\tau-\lambda)-(\tau-6)(\operatorname{tr} \varphi)^{2}=0 \tag{3.23}
\end{equation*}
$$

Taking covariant derivative of preceding relation along ξ and from (2.27), we yields

$$
\begin{equation*}
(\tau-6)(\operatorname{tr} \varphi)\left\{4-(\operatorname{tr} \varphi)^{2}\right\}=0 \tag{3.24}
\end{equation*}
$$

Hence, from the above equation we conclude that either $\tau=6$, or $\tau=2$, or $\lambda=6$. This finishes the proof.

4. Riemann soliton

Theorem 4.1. Let $M(\operatorname{dim} M=n>2)$ be an η-Einstein Lorentzian paraSasakian manifold and represents a Riemann soliton for V has a constant divergence. Then either V is strict infinitesimal contact transformation or M is of constant curvature 1 .

Proof. By the hypothesis, divV is constant. Therefore, the contraction of equation (1.8) gives an expression for τ and shows τ is constant on M. Taking the covariant derivative of equation (2.10) leads to obtaining

$$
\begin{equation*}
g\left(\left(\nabla_{X} Q\right) Y, Z\right)=\left(\frac{\tau}{n-1}-n\right)\{\eta(Z) g(\varphi X, Y)+\eta(Y) g(\varphi X, Z)\} \tag{4.1}
\end{equation*}
$$

In view of the above condition and from (1.8), we derive

$$
\left(\nabla_{X} £_{V} g\right)(Y, Z)=\frac{-2}{n-2}\left(\frac{\tau}{n-1}-n\right)\{\eta(Z) g(\varphi X, Y)+\eta(Y) g(\varphi X, Z)\}
$$

Use of foregoing relation in the computational formula (2.15) yields

$$
\left(£_{V} \nabla\right)(X, Y)=\frac{-2}{n-2}\left(\frac{\tau}{n-1}-n\right) g(X, \varphi Y) \xi
$$

By the help of above condition and equation (2.3), we obtain

$$
\begin{aligned}
\left(\nabla_{X} £_{V} \nabla\right)(Y, Z)= & \frac{-2}{n-2}\left(\frac{\tau}{n-1}-n\right)\{g(\varphi X, \varphi Y) \eta(Z) \xi \\
& +g(\varphi X, \varphi Z) \eta(Y) \xi+g(Y, \varphi Z) \varphi X\}
\end{aligned}
$$

With the help of previous equation, the right side of the relation (2.16) is computed as

$$
\begin{aligned}
\left(£_{V} R\right)(X, Y) Z=\frac{-2}{n-2}\left(\frac{\tau}{n-1}-n\right) & \{g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi \\
& +g(Y, \varphi Z) \varphi X-g(X, \varphi Z) \varphi Y\}
\end{aligned}
$$

Tracing this over X implies

$$
\begin{equation*}
\left(£_{V} S\right)(Y, Z)=\frac{-2}{n-2}\left(\frac{\tau}{n-1}-n\right)\{(\operatorname{tr} \varphi) g(Y, \varphi Z)\} . \tag{4.2}
\end{equation*}
$$

In equation (4.2), by placing $Z=\xi$ and from (2.7), we obtain

$$
\begin{equation*}
(n-1)\left(£_{V} \eta\right) Y=g\left(Q Y, £_{V} \xi\right) \tag{4.3}
\end{equation*}
$$

In order to find $g\left(Q Y, £_{V} \xi\right)$, we go through an η-Einstein condition. By taking an inner product of (2.10) with $£_{V} \xi$ we find the following:

$$
\begin{equation*}
g\left(Q X, £_{V} \xi\right)=\left(\frac{\tau}{n-1}-1\right) g\left(X, £_{V} \xi\right)+\left(\frac{\tau}{n-1}-n\right) \eta(X) \eta\left(£_{V} \xi\right) \tag{4.4}
\end{equation*}
$$

In (1.8), for $Y=\xi$ and the expansion of $£_{V} g$ provides
(4.5) $(n-2) g\left(X, £_{V} \xi\right)=\{2(n-1)(1+\lambda)+2(\operatorname{div} V)\} \eta(X)+(n-2)\left(£_{V} \eta\right) X$.

For $n>2$, by taking $Y=\xi$ in (4.3) and by the fact that $Q \xi=(n-1) \xi$ we obtain the value $\eta\left(£_{V} \xi\right)=0$. Finally, substituting (4.5) in (4.4) (minding that $n>2$) and then the use of the resulting equation in (4.3) gives

$$
\begin{equation*}
\left(n-\frac{\tau}{n-1}\right)\left(£_{V} \eta\right) X=\left(\frac{\tau}{n-1}-1\right)\left(\frac{2(n-1)(1+\lambda)+2(\operatorname{div} V)}{n-2}\right) \eta(X) \tag{4.6}
\end{equation*}
$$

For an η-Einstein Lorentzian para-Sasakian manifold with constant τ, we have from Theorem 2.7 that either $\tau=n-1$ or $\tau=n(n-1)$. Therefore, if $\tau=n-1$, then the preceding equation shows that V is a strictly infinitesimal contact transformation. This completes the either part of the theorem. Next, if suppose $\tau=n(n-1)$, then from (4.6) we infer

$$
\begin{equation*}
(n-1)(1+\lambda)+\operatorname{div} V=0 \tag{4.7}
\end{equation*}
$$

Moreover, contraction of (1.8) leads to achieve

$$
\begin{equation*}
n+n \lambda+2(\operatorname{div} V)=0 \tag{4.8}
\end{equation*}
$$

On solving (4.7) and (4.8), we obtain $\lambda=-1$ and $\operatorname{div} V=0$. Making use of the resulting equations and $Q X=(n-1) X$ in (1.8) provides $£_{V} g=0$, i.e., V is Killing. Thus, from (1.7), we conclude that, manifold M is of constant curvature 1.

Theorem 4.2. If (φ, ξ, η, g) is a Lorentzian para Sasakian structure on an n-dimensional manifold M, then for $n>2, g$ never a Riemann soliton (g, ξ).
Proof. If suppose a Lorentzian para-Sasakian metric g is a Riemann soliton for $V=\xi$, then from (1.8) we have
(4.9) $2 S(X, Y)+\{2(n-1) \lambda+2(\operatorname{tr} \varphi)\} g(X, Y)+2(n-2) g(\varphi X, Y)=0$.

Choosing $X=Y=\xi$ in the foregoing relation we get

$$
\begin{equation*}
\operatorname{tr} \varphi=-(n-1)(1+\lambda) \tag{4.10}
\end{equation*}
$$

Contracting (4.9) over X, Y, and from the above condition we find

$$
\begin{equation*}
\tau=-\lambda n(n-1)+2(n-1)(n-1)(1+\lambda) \tag{4.11}
\end{equation*}
$$

Since λ is constant, which implies τ is constant on M and from (4.9), we deduce

$$
\begin{equation*}
\left(\nabla_{X} Q\right) Y=-(n-2)\left(\nabla_{X} \varphi\right) Y \tag{4.12}
\end{equation*}
$$

In the above relation putting $Y=\xi$ and then contracting over X finds $(n-$ $2)(n-1)=0$. But this is a contradiction to our assumption that $n>2$. This completes the proof.

Example 4.3. In Example 2.10, if g represents a Riemann soliton (g, ξ), then in equation (1.7) for $W=Z=u_{1}$ and $X=Y=u_{2}$, we have

$$
\begin{equation*}
2+2 \lambda+\left(£_{u_{3}} g\right)\left(u_{2}, u_{2}\right)+\left(£_{u_{3}} g\right)\left(u_{1}, u_{1}\right)=0 \tag{4.13}
\end{equation*}
$$

which finds $\lambda=-1$. Again, in (1.7) for $W=Z=u_{2}$ and $X=Y=u_{3}$ we get

$$
\begin{equation*}
-2+2+2 g\left(\nabla_{u_{2}} u_{3}, u_{2}\right)=0 \tag{4.14}
\end{equation*}
$$

Since, $g\left(\nabla_{u_{2}} u_{3}, u_{2}\right)=-1$, use of this in the preceding relation leads to a contradiction. Hence, g never admits a Riemann soliton for V being a Reeb vector field ξ.

Theorem 4.4. If a Lorentzian para-Sasakian metric g supports a Riemann soliton for $V=D f$ with divergence of V (i.e., $\operatorname{div} D f=-\Delta f$) constant, then M is of constant curvature 1 and the scalar curvature $\tau=n(n-1)$.

Proof. If the vector V in (1.7) is a gradient of a smooth function f, then the relation (1.8) reduces to

$$
\begin{equation*}
Q W+\lambda(n-1) W-(\Delta f) W+(n-2) \nabla_{W} D f=0 \tag{4.15}
\end{equation*}
$$

If Δf is constant, then the contraction of (4.15) shows that the scalar curvature τ constant. Further, from equation (4.15), we derive the following relation

$$
\begin{equation*}
\left(\nabla_{X} Q\right) W=-(n-2)\left\{\nabla_{X} \nabla_{W} D f+\nabla_{\nabla_{X} W} D f\right\} \tag{4.16}
\end{equation*}
$$

So, from this and equation (4.15), we find

$$
\begin{equation*}
(n-2) R(X, W) D f=-\left(\nabla_{X} Q\right) W+\left(\nabla_{W} Q\right) X \tag{4.17}
\end{equation*}
$$

For $n \geq 3$, in the above expression setting $X=\xi$ and then taking the scalar product of the resulting condition with ξ gives $g(R(\xi, W) D f, \xi)=0$. Next, contraction of (4.17) over X with respect to an orthonormal basis provides $(n-2) Q D f=0$. This implies f is constant along ξ. Further, the use of equation (2.5) in $g(R(\xi, W) \xi, D f)=0$ shows $W f=0$, i.e., f is constant. Hence, the equation (1.7) turns to

$$
\begin{equation*}
R(X, Y) Z=-\lambda\{g(Y, Z) X-g(X, Z) Y\} \tag{4.18}
\end{equation*}
$$

Replacing Y and Z by ξ and X by φX in (4.18) and by the virtue of (2.5), we get the value of λ as -1 . Hence the theorem is proved.

Acknowledgement. The first author (Shruthi Chidananda) is thankful to University Grants Commission, New Delhi, India (Ref. No.: 1019/(ST)(CSIRUGC NET DEC. 2016) for financial support in the form of UGC-Junior Research Fellowship. The author also thankful to DST, New Delhi, for providing financial assistance under FIST programme.

References

[1] A. M. Blaga, Some geometrical aspects of Einstein, Ricci and Yamabe solitons, J. Geom. Symmetry Phys. 52 (2019), 17-26. https://doi.org/10.7546/jgsp-52-2019-17-26
[2] A. M. Blaga and D. R. Lațcu, Remarks on Riemann and Ricci solitons in (α, β)-contact metric manifolds, J. Geom. Symmetry Phys. 58 (2020), 1-12. https://doi.org/10. 7546/jgsp-58-2020-1-12
[3] S. K. Chaubey, Some properties of LP-Sasakian manifolds equipped with m-projective curvature tensor, Bull. Math. Anal. Appl. 3 (2011), no. 4, 50-58.
[4] S. Chidananda and V. Venkatesha, Riemann soliton on non-Sasakian ($\kappa, \mu)$-contact manifolds, Differ. Geom. Dyn. Syst. 23 (2021), 40-51.
[5] B.-Y. Chen and S. Deshmukh, Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterr. J. Math. 15 (2018), no. 5, Paper No. 194, 9 pp. https://doi.org/ 10.1007/s00009-018-1237-2
[6] K. De and U. C. De, A note on almost Riemann soliton and gradient almost Riemann soliton, https://arxiv.org/abs/2008.10190.
[7] S. Deshmukh and B. Y. Chen, A note on Yamabe solitons, Balkan J. Geom. Appl. 23 (2018), no. 1, 37-43.
[8] M. N. Devaraja, H. Aruna Kumara, and V. Venkatesha, Riemann soliton within the framework of contact geometry, Quaest. Math. 44 (2021), no. 5, 637-651. https://doi. org/10.2989/16073606.2020.1732495
[9] I. K. Erken, Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Period. Math. Hungar. 80 (2020), no. 2, 172-184. https://doi.org/10.1007/ s10998-019-00303-3
[10] A. Ghosh, Yamabe soliton and quasi Yamabe soliton on Kenmotsu manifold, Math. Slovaca 70 (2020), no. 1, 151-160. https://doi.org/10.1515/ms-2017-0340
[11] R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
[12] I. E. Hirică and C. Udrişte, Ricci and Riemann solitons, Balkan J. Geom. Appl. 21 (2016), no. 2, 35-44.
[13] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
[14] K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N.S.) 47 (1988), no. 2, 189-197.
[15] I. Mihai and R. Roşca, On Lorentzian P-Sasakian manifolds, in Classical analysis (Kazimierz Dolny, 1991), 155-169, World Sci. Publ., River Edge, NJ, 1992.
[16] I. Mihai, A. A. Shaikh, and U. C. De, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Matematico di Messina, Serie II. (1999) 3.
[17] D. M. Naik, Ricci solitons on Riemannian manifolds admitting certain vector field, Ricerche di Matematica (2021). https://doi.org/10.1007/s11587-021-00622-z
[18] D. M. Naik, V. Venkatesha, and H. A. Kumara, Ricci solitons and certain related metrics on almost co-Kaehler manifolds, Zh. Mat. Fiz. Anal. Geom. 16 (2020), no. 4, 402-417.
[19] A. A. Shaikh and K. K. Baishya, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 49(97) (2006), no. 2, 193-205.
[20] M. Tarafdar and A. Bhattacharyya, On Lorentzian para-Sasakian manifolds, in Steps in differential geometry (Debrecen, 2000), 343-348, Inst. Math. Inform., Debrecen, 2001.
[21] C. Udrişte, Riemann flow and Riemann wave, An. Univ. Vest Timiş. Ser. Mat.-Inform. 48 (2010), no. 1-2, 265-274.
[22] C. Udrişte, Riemann flow and Riemann wave via bialternate product Riemannian metric, preprint (2012). arXiv.org/math.DG/1112.4279v4
[23] V. Venkatesha, H. A. Kumara, and D. M. Naik, Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 7, 2050105, 22 pp. https://doi.org/10.1142/S0219887820501054
[24] V. Venkatesha and D. M. Naik, Yamabe solitons on 3-dimensional contact metric manifolds with $Q_{\varphi}=\varphi Q$, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 3, 1950039, 9 pp. https://doi.org/10.1142/S0219887819500397
[25] Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin 23 (2016), no. 3, 345-355. http://projecteuclid.org/euclid.bbms/ 1473186509
[26] Y. Wang, Minimal and harmonic Reeb vector fields on trans-Sasakian 3-manifolds, J. Korean Math. Soc. 55 (2018), no. 6, 1321-1336. https://doi.org/10.4134/JKMS. j170689
[27] Y. Wang, Almost Kenmotsu $(k, \mu)^{\prime}$-manifolds with Yamabe solitons, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 1, Paper No. 14, 8 pp. https://doi.org/10.1007/s13398-020-00951-y
[28] K. Yano, Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, 1970.

Shruthi Chidananda
Department of Mathematics
Kuvempu University
Shankaraghatta-577 451
Karnataka, India
Email address: c.shruthi28@gmail.com
Venkatesha Venkatesha
Department of Mathematics
Kuvempu University
Shankaraghatta-577 451
Karnataka, India
Email address: vensmath@gmail.com

[^0]: Received September 24, 2020; Revised September 1, 2021; Accepted September 7, 2021. 2010 Mathematics Subject Classification. 53C50, 53C15, 53C25.
 Key words and phrases. Lorentzian para-Sasakian manifold, η-Einstein manifold, Yamabe soliton, Riemann soliton.

