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ISGMETRIC EMBEDDINGS OF LORENTZIAN MANIFOLDS BY THE
SOLUTIONS OF THE D’ALEMBERTIAN EQUATION

By Jong-Chul Kim
Introduction

The topological and proper embeddings of Lorentzian manifolds by solutions
of the d’Alembertian equations were investigated in [6]. In this paper we shall
show that Lorentzian manifolds can be isometrically embedded into a pseudo-
euclidean space of suitable dimension.

By taking the covariant and contravariant derivatives of a scalar field, the
divergence of the gradient of a scalar field becomes an invariant second order
linear partial differential operator,
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where ¢ is a Lorentzian metric, |g| determinant of g, g/ absolute value of

lgl, and g’j is a component of the inverse of the matrix (g,-j) consisting of

components of the metric tensor g. The d'Alembertian equation means that
[e=0.

The function # could be a vector valued function, and the equation, in this
case, consists of a system of the system above. In any cases, solutions of the
equation are considered in the causal domain, and we need to treat the equation
under the causal conditions and global hyperbelicity for the global solutions.

We showed the fact that any point in smooth Lorentzian manifold has a
coordinate chart whose functions consist of solutions of the d’Alembertian
equation in [6]. We will call this kind of the chart “d’Alembertian coordinate
chart” throughout this paper. We assume that the manifold is smooth and
globally hyperbolic Lorentzian manifold of dimension . IR’ denotes a Euclidean
space of dimension p, and IRﬁ a pseudo-euclidean space of p-positive and g-neg-
ative signatures. g(x) denotes the induced metric of a scalar function # We
shall need to consider sums and direct products of embeddings defined by

(ot~ a,) () = 1) (%) (%), (ot Xtp) (2 = (g (), 205(%))

where u,'s are functions of M to IRﬁ.
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Clearly, g(u;Xu,)=g(u)+gu,).
Metrics on M will be partially ordered by setting
2,=g, iff g,(X,X)<g,(X,X) for X in the tangent bundle TM.
u, means the differential mapping of the mapping #. Other terminologies refer

to the references.
2. Isometric embeddings
The following lemmas have been shown in [6].

LEMMAC(A). For each point in M there exists a coordinate meighborhood of
the point in causal domain whose coordinate functions consist of solutions of
the d" Alembertian equation.

LEMMAB). If a manifold M is smooth and globally hyperbolic Lorenizian
manifold of dimension m, then M can be topologically (properly) embedded into
IR and also IR‘EH( p=2m+1) by solutions of the d’ Alembertian equation.

LEMMA(C). If g is a Lorentzian metric, then there exisis a mapping v of M
to IR: such that g(u)<g and the components of wu consist of soluiions of the
d’ Alembertian equation.

LEMMA(D). If g is a positive definite metric on M, then there is a topological

(proper) embedding w of M into IRT’"H and also i’R’lH1 (p=2m+ 1) such that
gu)<g and the components of u consist of solutions of the d’ Alemberiian equalion.

Let # be an embedding of M to IR’. Let X be a normal basis of local cross
section of the normal bundle v over u(M).

Define F : TM—w by F(A)=% X (X, X (X, V"*Au*A), where V is cov-

ariant differentiation in IR’ and n is metric tensor on IR, If F is everywhere

o

two-one, we call # perturbale. A perturbale embedding is locally one such that
the mapping from v to the space of symmetric covariant tensor on M given by

)
g za(f(x)) E‘deadxb
G5°0x"
is onto, where z° is coordinates in an open set in M and 2% is coordinates in

IR’. We adopt the Ck—topo]ogy on the bundle of symmetric covariant second
rank tensors over M as usual way, where % is larger than 3 and oo.

LEMMA 1. If C“z—mapping V : M——IR® is perturbale and components of v
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are solutions of the d’ Alembertian equation, then there exists a Ck—:zeighbarhaod
U of g(v) such that for g in U there is a perturbale embedding u: M——IR’

with g(u)=g.

PROOF. Since M is globally hyperbolic, we can take increasing compact subsets
and necessary subsets of the compact subsets of M, in order to smooth the
relative functions and get our perturbale embedding whose components are
solutions of the d’'Alembertian equation as Clarke [1] and Nash [11] did. Qur
functions are different from theirs. However, applying the global hyperbolicity
of M to solutions of the equation, the method is similar to them. The detailed
proof is omitted.

LEMMA 2. If g is a positive definite metric on M, there exists an embedding
u: M—— IR such that u is perturbale, g(u)<g and the components of u are
solutions of the d' Alembertian equation on M.

PROOF. By Lemma A and D, there exists an immersion # of M into IR™ such
that g(x)<g and components of # are solutions of the d’Alembertian equation.

Let vk=ijyiyj and y" be coordinates in IRzm. where the D* are constant
symmetric 2m>2m-matrices and k=1, 2, -, p. Choose p-dimensional subspace L
of set of all such matrices such that L is spanned by the D"s. For the d'Ale-
mbertian coordinates z° at x in M the map h, :ij——»ﬁgvk/fv‘x“é‘xb is linear from
K into symmetric tensor space of rank two at x. Then it is clear that, if the
dimension of the intersection of L with the kernel of &, is the whole of this
space.

Applying it to each x in M and using an immersion #, the set of %, such that
k. |L is not onto is of dimension g, where ¢ is less than or equal to p(2m2 + m
—p—l)+%m(m+3)—l. Thus, by adjusting the dimension p2—1*-m(m+3), we
can choose L on which %, is onto for all x in M. This means that any immersion

of the form
Cfvi +ijvi -(k= 1,2, "%"m(m-l-S))

will be perturbale, where C’s are arbitrary. By taking # to satisfy the intersec
ting condition for a regular immersion, our lemma follows as well as g(#)<lg.

LEMMA 3. If M is globally hyperbolic, then M can be isometrically embedding
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into IR, pz%m (2m2+37) -!-%m?%—l, by solutions of the d’ Alembertian equation
on M.

PROOF. This lemma can be proved by using Lemma A,C, Lemma 1 and 2.
We will omit the detailed proof.

LEMMA 4. If M is smooth and globally hyperbolic Lorentzian manifold with
the metric g and dimension m, there exisis a mapping u . M“——»IRi such that the

componenis of u are solutions of the d’ Alemberitian equation on M and g(u)<g.

PROOF. Let #; be a mapping of M to IR: whose components are solutions of
the d’Alembertian equation. Take a covering of M as consisting of the d’Alem-
bertian coordinates charts

(Ull' (xls xz: b xm))
i

dx

with

time-like and ”1*( aa = )#0 in a small neighborhood of » in M.
x

Let ¢ be a smooth mapping of IR to IR’ by
u(x)=(x, p,(x))
such that |4yl =constant, p=smooth periodic function with integer pericd ¢ and

w(na)=(na,0).
Let {p;] be a smooth partion of unity subordinate to the above covering and

(D) =1,(x, &), i=1,2, -, m—1.
Define a mapping # of M to IRi by
u (%) if €V,
e ={a1(x", A - +o.u (™) + 0, DE* ™, otherwise,

where g; is component of .
Using now Kuiper's method [8] and approaching # to infinity, the lemma can

be complete, that is g(x)<g.

THEOREM. If a smooih manifold M of dimension m is globally hyperbolic,
then M can be isometrically embedded into IR? by solutions of the d’ Alembertian

equation on M, where ¢>>1, and pz—é—m(2mz+ 37)+—g—m2+2.

PROOF. Let g be the Lorentzian metric such as g=g,+ g, where g, is of rank
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m and signature m—2, and g, is positive.

Let #, be the mapping given by Lemma 4 such that g(al)ggl. Now, let #,
be the embedding given by Lemma 3 such that g(u,)=g,—g(u,)+g..

Then, letting u=u,Xu, u is the isometric embedding of M to [Rg.

Young-Nam University, Daegu, Korea.
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