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BY SOLUTIONS OF THE D'ALEMBERTIAN EQtJATIONS

By ]ONG-CHUL KIM

1. Introduction

In [5J, I proved that any connected open Lorentzian manifold M can he
topologically embedded into a euclidean (pseudo-euclidean) space by solutions
of the d'Alembertian equation. This realizations of an abstract manifold is
still not quite beautiful in some sence. For example, the figure 6 is topolo
gical embedding of a line into 2-dimensional euclidean space. However, it
is not proper embedding of the line because of limit point of the line on
one side. Thus it is desirable to get the proper embedding of our M for the
purpose of applying the results to Mathematics and Physics.

In this paper we will show that any globally hyperbolic connected open
Lorentzian manifold can be properly embedded into a euclidean (pseudo
euclidean) space by solutions of the d' Alembertian equation on M.

2. Prelimiuries

Throughout this paper a manifold M will be restricted to an orientable
space which is Coo, connected, non-compact, paracompaet, Hausdorff, time
orientab1e, and has dimension m. A Lorentzian metric on M means the mo
dules of the signature of the metric is m-2 or 2-m. This manifold, M, with
a Lorentzian metric is called a Lorentzian manifold. By taking the covariant
and contravariant derivatives of a scalar field the divergence of the gradient
of a scalar field, becomes an invariant second order linear partial differential
operator,

ppiU = 11 gll--!-L(lIglltgij~),
OXi OXj

where g is a Lorentzian metric, Ig I determinant of g, IIgl1 absolute value
of g, that is,

1

llglp!'= ..; Idetgiil ,
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and g;j is a component of the inverse of the matrix (g;j) consIstmg of the
metric tensor. This differential operator is called the d'Alembertian and will
be denoted by 0, and we will call the d'Alembertian equation Du=O. 0
is strong, self-adjoint, contin~ous, hyperbolic, second order, linear partial
differential operator. Moreover, it is invariant by Lorentzian transformati
ons, and the d'Alembertian equation is a kind of the wave eqwitions. The
vector wave equations are also treated for our purpose.

The future dependence domain D+ (q) is defined by the set of all points
p in a geodesically convex demain D being time orientable that can be rea
ched along future directed time-like geodesics from q. And the past depend
ence domain D+ (q) is also defined similarly. The future emission J+ (q) at
q is the set comprising q together with all points from q by a .positively or
iented non-space-like curve, that is, one whose tangent vector has non
positive length-squared. And the past emission J+ (q) at q is also defined
similarly. We know that

D+(q)=J+(q), D-(q)=J-(q), J+(A)=UJ+(q), and J-(A)=UJ-(q)
~A ~A

for qED and a subset A, where - indecates closure.
A connected op€;m set D will be called a causal domain if
1) there is a geodesically convex domain Do such that DcDo

and
2) J+ (q) nJ- (q) is a compact subset of D, or void for all pairs of points

p, q in D.
A lorentzian manifold is said to be globally hyperbolic if the strong cllUs

ality assumptions (see [5~]) hold and if for any two pair p, q in M, J+ (q)
nJ- (p) is compact.

Let Rl be apseudo euclidean space, where p and q are non-negative inte
gers. If q=O, it is a euclidean space. A mapping u : M~Rl will be said
a topological CL-embedding if

1) u is of differentialibility class Ck (k:2::0) and its differential mapping
u* has rank m at all points in M

2) u is injective.
Let L (f) be the limit set of f, that is,

L(f) = {yERll for each divergent sequence {xn} in M,
f(xn) converges to y in R/}.

In addition to (1) and (2) above, if L(u) has a null intersection with
u (M) , then u is called a proper embedding. The following statements
for the proper mapping of M are equivalent:

3) a mapping f : M~RP is 'proper if and only if for each compact subset
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K of RP, f- 1 (K)- is compact
.4) let f be an embedding of M into RP. f is proper if and only if f is

a closed mapping
5) let M* and (RP) * be one-point compactification of M and RP respe

ctively, and extand f : M~Rp to a mapping F: M*~ (RP) * by letting F
(00) = 00. Then f is proper continuous if and only if F is continuous. Let
Q)' (M) be a set of all distributions on M. Then the strong topology of di
stributions on Q)' (M) is defined by taking basic neighborhoods of zero in
9)' (M) as sets

V(A, e) = {uEQ)' (M) I I<u, cjJ> I<e for all cjJEA}

for an arbitrary positive e and an arbitrary bounded subset A of the space
of test functions Co (M). This topology is equivalently defined by the semi
norms (see [4J). If a manifold M satisfies the global hyperbolicity M adm
its global time functions and the cauchy surfaces (say cauchy surfaces).
Moreover, in this case the following facts are true (Hawking and ElIis [2J,
Friedlander [lJ);

6) M=RxN, where N is (m-I)-dimensional manifold and cauchy surface
7) M=D+(N) nD-(N).

In [5J, the following results were shown:

LEMMA *. If X is acompact subset of a causal domain Do, the €, (X) is a
dense subset of tI3(Do) in the strong topology of the space of distributions,
where €, (X) is a set of all embeddings of X to R2m+1 by solutions of the d' Ale
mbertian equation, tI3 (Do) is a subspace of Q)' (Do) consisting of all solutions
of the d' Alembertian equation on Do, and Q)' (Do) is 2m+ I-valued distribu
tion space on Do.

THEOREM *. If M is a globally hyperbolic connected open Lorentzian man
ifold of dimension 111, then M can be topologically embedded into R2m+l by the
mapping whose components are solutions of the d' Alembertian equation.

THEOREM **. If M is a globally hyperbolic connected open Lorentzian man
ifold with CLLorentzian metrics (k 2 3) and dimension m, them M can be to
pologically embedded into Rl+1 (p22m+I) by the mapping whose components
are solutions of the d' Alembertian equations. Moreover the induced metric from
this mapping is Lorentzian.

REMARKS. Non-compactness of our manifold, _that is, open manifold, is
necessary for our embedding problem. Suppose the manifold admits compact
ness. Then this allows violations of the physical world and mathematically
presents many obstacles for the cl'Alembertian equation. And it happens tr-
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oubles for the Lorentzian metrics on our manifold (see Friedlander ClJ, Ha
wking and Ellis [2J, Hormander [3J and Leray [6]). Since the basic tools
of our embedding problems are solutions of the d'Alembertian equation on
M, we are concerned with the causal domains for the well-posed problems
of the d'Alemhertian equation (see Friedlander D], and Leray [6J).

3. The main Results

Before we prove the main theorem, the lemmas will be constructed. The
following lemma is based on the techniques of Friedlander [lJ and Hawking
and Ellis [2J.

LEMMA 1. Let M be a glob ally hyperbolic Lorentzian Manifold and {ail
be a sequence of real numbers. Then there exist a solution u of the d' Alembe
rtian equation on M, and a s~quence of compact subsets {Xi} of M such that

u : M--'>R and u?ai on Xi,

where XiCXi+1 and UiXi=M.

Proof. Let N be a cauchy surface of the globally hyperbolic Lorentzian
Manifold M. Then M=D+(N) UD-(N) and the fundamental solutions of
the d'Alembertian equation on M vanishies on M- J+ (N) or M- J- (N).
It is enough to consider our desired solutions of the equation on J+ (N) because
solutions on J- (N) can be similarly taken, and the sum of these two
solutions can be a global solution of the equation on M which satisfies the
lemma.

Since M:::;RXN, each {b} XN is a cauchy surface. In case of the space
time that is, the 4-dimensional Lorentzian manifold which is Einstein gen
eral relativity space, we can choose R as a global time on M.
Thus we can first consider a coordinate neighborhood U of a point of N
such that

unN= {XIXl=O}.

U may be taken as a causal neighborhood of the point of N if necessary.
By letting x= (XI. x*), the cauchy data given

u(O, x*) =uoex*)?a for a given real number a,

and

0IU(O, x*) =Ul (x*) ?o.
Let us assume these functions, Uo and Uh are smooth on un N. Un Cx*')

=OI"U(O, x*) can be computed, for n?2, from Uo, Uh and the equation 01n- 2
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(Du) =0. To convert the formal series in Xl nto a convergent series, let
O"(t) ECo"'(R) be such that

O~O"~ 1,

0"= 1 for It I ::; ~,

0"=0 for It I~l.
Then, choosing a sequence of positive number {e,,}, which increases suffic
iently rapidly, the series

~ u" (X*) Xl," 0" (C"XI)
11=0 n.

converges in U to a function v, and uniformly in the maximal compact su
bset of U (see Friedlander [IJ). By our assumptions above and § 4- § 6
in Friedlander Cl], v is a formal solution of the d' Alembertianequation on
U with the cauchy data on un N. Moreover, v~a on the maximal compact
subset of U. It is possibly guaranteed by the condition, UI (x*) ~o (see the
minimum principle in protter and weinberger [7J, e. g., assigning more
restricted data as UI(X*) =0 and u,,(x*)~O (n~3 odd) if Xl is negative,the
series above has values which are larger than a on the maximal compact su
bset of U.

Now let {Ui} be a locally finite covering of N by coordinate neighborh
oods of this type, and denote the union of the Ui by W. Let {Pi} be a
partition of unity defined on W, subordinated to this covering. By carrying
out the constructions just described in each Vi with the cauchy data on Ui

nN, and letting v=~ V,-tPi, V is a solution of the equation on W with the
;

cauchy data on W nN (see more detailed explanations in Friedlander [lJ)
such that it vanishes outside of W because we have, in terms of the local
coordinate in each Ui,

4: pj=l, ~ chpj=O.
J 1

Moreover, since for each maximal compact subset of Uk and given real nu
mber all we have

by the construction of Uk, v ~ ak on the maximal compact subset of Uk'
Let X be the characteristic function of J+ (N) such that

X=l on W,

=0 on J+(N) - TV:
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Consider the equation

Then,

Jong-ehul Kim

Dw=X· Dv on J+(N).

O=Dw=X· Dv=l· Ov=Dv on W

could be w=v on w: Therefore we can similarly solve the equation

Dw=X· Ov=O on J+(N),

i. e. ,
Dw=X· Dv=O . Dv=O on J+(N) - w:

In other words, it would be similarly done by taking the cauchy data on
the cauchy surface {b} X N for some b in R. This solution w may possibly
be taken a non-negative function by assigning suitable cauchy data as above.
Thus u=v+w is a solution of the d' Alembertian equation on J+(N). Let
{Xi} be a sequence of compact subsets such that

XiCXHh UiXi=J+(N),

and Xi contains the maximal compact subset .of Uj for all j:S; i, but not the
maximal compact subset of UT< for k>i. Then, by our constructions

u 2 ai on Xi for each i and given real number ai.

The proof of our lemma is complete.

We will show examples which are related to Lemma 1 by taking Minko
wski space. Let M be Rm with Lorentzian metric. We know that if the ca
uchy problem is

Ou=O on Rm
,

u(O, x) =uo(x) ,

~u I =U1 (x),
ut t~O

and Uo, U1 are smooth functions on Rm
-

1
, then a representation of global

solution of lhe d'Alembertian equation on Rm is

u(t, x) =uo(x) (x*) ;t (G+-G_) +U1(X) (x*) ;t (G+-G_),

where G+ and G_ are fundamental solutions of the equations for the past and
future emissions respectively, and (x*) means convolution with resPect to x
(see Treves [8J). From this representation, let us compute the next exam
ples.
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EXAMPLES. Consider the cauchy problem;
Du=O on R

2
,

u(O, x) =uo(x),

aU! =Ul(X),
at t~O

where Uo and Ul are Ck or C'"' on R, and in addition, for given real number
ab Uo :2:: ai and ul:2:: 0 on the cauchy surface in LIi, where LIi is past or fut
ure emission. Then, by usual computations,

1 fx+t
u (t, x) =2 {uo(t+x) +uo(t-x) + x-t Ul (y)dy}

1:2:: 2 {2ai+b} :2:: ai on Xi,

where Xi is compact subset of LIi containing the cauchy surface, and

Jx+t
b= ul(y)dy on Xi

x-t

Next, consider the cauchy problem;

Du=O on R3,
u(O, x, y) =uo (x, y),

~~ Lo=Ul (x, y),

where Uo and Ul are Ck or C"" on R2, and in addition, for given ai,

Uo(x,y) 2 ai, Ul(X,y) and utt lt-o:2::0

on the cauchy surface in LIi.
Then we have the solution

U(t, x, y) =uo(x,y) +....LJJ Ul(X+W,y+z) dw dz
271: w2+z2<t2 -vi t 2-w2 _Z2

+l ftdtJJ Utt(x+w,y+z) dw dz.
271: Jo w 2+z2<t2 V t 2-w2_z2

Moreover,

U(t,x,y)2ai+b2ai on Xi

where
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Similarly we can get that, for given ai, u(t, x, y, z) ';;?ai on suitable compact
subset Xi of R4 and the m-dimensional case can also be done by the sim
ilar way. We took the above representations of solutions of the equations
from Treves [8J and Protter and Weinberger [7J. Moreover the additional
condition of the cauchy data above are closely related to the minimum prin
ciple' that is, if

an- 1 •
atn- 1 (Du)::;;O m D, and

OiUat; (0, Xh ••• , Xn) ~O, i=l, .. ', n,

where Q is a domain of t ~ 0 containing the characteristic cone of each of
its points, then the minimum value of u in Q must occur at t=O (see Protter
and Weinberger [7J). Therefore our examples described above are reasona
ble and, as we know, the Huygen's principle does not interfere with our
example.

Now we will show the existence of proper mapping of M to Rq whose
components are solutions of the d'Alembertian equations.

LEMMA 2. If M is globally h,yperbolic, then there exists a proper mapping
u : M~Rm+1 whose components are solutions of the d' Alembertt"an equations on
M.'

Proof. By Lemma 1, for given real numbers {aA, there exist solutions Ui,

i=I,2, •.., m+l, of the equations on M such that if {X/1 is one of Lemma
1, then

Ui(P) ~aj for each i and all pEx/

By assigning suitable aj,

Hm infX/ Ui (p) = 00 for each i.
j_oo pe

Therefore the mapping U : M~Rm+1 defined by

P~(Ul(P), ···,Um+1(p»

is proper by (5) on page 3.
The proof of the lemma is complete.

Now, using these lemmas and the results in the previous chapter, the fol
lowing theorem can be proved.

THEOREM. Any connected open Lorentzian manifold M of dimension m which
is global hyperbolic can be properly embedded into R2m

+l by solutt"ons of the
d' Alembertian equations.
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proof. By Theorem* there exists an topological embedding

U= (UI> "', UZm+1) : M_RZm+1

whose components are solutions of the d' Ale mbertian equations on M.
Let a sequence {all of real numbers by

a/=max(2max ( maxluk(p) I), j),
peXij lsks2m+l

where {X/} is one of Lemma 1,
i=l, "',m+1, and j=1,2, "',

131

m+1

V m+l(P) - I: bm+1,IUm+l(P),
1=1

m+i
Um(p) - L: bZm+1,lUm+l(P»

1=1

Then a/?:.j for each i.

Now, we can choose solutions Vi of the equations on M, as those of Lemma

1 on x/ for each i, such that, by Lemma2, the mapping

v= (VI> "', Vm+l) : M_Rm+l

could be a proper mapping in terms of solutions of the d'Alembertian equa

tions on M and vi?:.a/?:.j on x/.
As we did in Lemma *, the functions VI. "', Vm+I> Uh "', UZm+l together

form a proper embedding of M into R3m+Z. And, using the same projection
techniques in Lemma * successively, we can choose real numbers bk'l as close
to zero as desired, in the strong topology of distributions, so that the map
ping w : M-RZm+1

m+1
VZ(p) - L: b2>/Um+l(P) , "',

1=1
m+1

Ul(P) - 1:; bm+Z,IUm+I(P), "',
1=1

IS an embedding of M into RZm+1 as we described in Lemma *. Moreover,

this w is a proper mapping.

In fact, let bk,l as Ibk,ll<m~l for all k,l. Then, for each i,

m+1

v;(p) - L: bi,lUm+l(P)
1=1

?:.a/ - (m+1)_1-sUp max Iun(p) I
m+1 Xii 1:>n,;2m+l

·1·1·1-> a·' - -a .'= -a·'>-J
-J 2 J 2J-2
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since Vi(P) ??a/ on xl
Letting j approach 00, this mapping becomes a proper mapping of M by
Lemma 2.

The proof of the theorem is complete.

Finally the next corollary can be proved easily from Theorem and the sa
me method as the proof of Theorem **.

CoROLLARY. Any connected open Lorentzian manifold M of dimension m can
be properly embedded into Rl+l (p??2m+ 1) by solutions of the d' Alembertian
equation on M.
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