• 제목/요약/키워드: Lithium ion diffusion

검색결과 70건 처리시간 0.025초

리튬 이차전지의 양극 내부 이온 확산 및 상변화 특성 연구 (Study of Li-Ion Diffusion and Phase Transition in Cathode of Li-Ion Battery)

  • 김수일;김동철
    • 대한기계학회논문집B
    • /
    • 제37권7호
    • /
    • pp.665-667
    • /
    • 2013
  • 리튬이온 전지의 양극은 다양한 종류의 전이금속재료로 구성되며, 전지의 성능은 양극을 구성하는 금속재료에 의해 많은 영향을 받는다. 이는, 양극 내부에서 리튬이온의 확산 및 상전이 양상이 재료마다 서로 다르게 나타나기 때문이다. 따라서, 충방전 시 양극 내부 리튬이온의 확산 및 상전이를 이해하는 것은 고용량, 고전압 리튬 이차전지를 설계하기 위해 필수적이다. 본 연구에서는 phase field model을 바탕으로 양극 내부의 리튬이온 확산 및 상전이 과정을 분석한다.

Prediction of Lithium Diffusion Coefficient and Rate Performance by using the Discharge Curves of LiFePO4 Materials

  • Yu, Seung-Ho;Park, Chang-Kyoo;Jang, Ho;Shin, Chee-Burm;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.852-856
    • /
    • 2011
  • The lithium ion diffusion coefficients of bare, carbon-coated and Cr-doped $LiFePO_4$ were obtained by fitting the discharge curves of each half cell with Li metal anode. Diffusion losses at discharge curves were acquired with experiment data and fitted to equations. Theoretically fitted equations showed good agreement with experimental results. Moreover, theoretical equations are able to predict lithium diffusion coefficient and discharge curves at various discharge rates. The obtained diffusion coefficients were similar to the true diffusion coefficient of phase transformation electrodes. Lithium ion diffusion is one of main factors that determine voltage drop in a half cell with $LiFePO_4$ cathode and Li metal anode. The high diffusion coefficient of carbon-coated and Cr-doped $LiFePO_4$ resulted in better performance at the discharge process. The performance at high discharge rate was improved much as diffusion coefficient increased.

하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안 (Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System)

  • 박성윤;김재영;김종훈;류준형;조인호
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

Enhanced Reaction Kinetic of Fe3O4-graphite Nanofiber Composite Electrode for Lithium Ion Batteries

  • Wang, Wan Lin;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권6호
    • /
    • pp.338-343
    • /
    • 2014
  • A $Fe_3O_4$-graphite nanofiber composite for use as an anode material was successfully synthesized by calcining $Fe_3O_4$ and graphite nanofiber (GNF) together in a $N_2$ atmosphere. Using this $Fe_3O_4$-GNF composite in a lithium ion battery resulted in a higher lithium storage capacity than that obtained using $Fe_3O_4$-graphite ($Fe_3O_4$-G). The $Fe_3O_4$-GNF (10 wt%) electrode exhibited a higher lithium ion diffusion coefficient ($2.29{\times}10^{-9}cm^2s^{-1}$) than did the $Fe_3O_4$-G (10%) ($3.17{\times}10^{-10}cm^2s^{-1}$). At a current density of $100mA\;g^{-1}$, the $Fe_3O_4$-GNF (10 wt%) anode showed a higher reversible capacity ($1,031mAh\;g^{-1}$) than did the $Fe_3O_4$-G (10%) anode ($799mAh\;g^{-1}$). Moreover, the $Fe_3O_4GNF$ electrodes showed good cycling performance without the addition of a conductive material.

Principles and Applications of Galvanostatic Intermittent Titration Technique for Lithium-ion Batteries

  • Kim, Jaeyoung;Park, Sangbin;Hwang, Sunhyun;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.19-31
    • /
    • 2022
  • Lithium-ion battery development is one of the most active contemporary research areas, gaining more attention in recent times, following the increasing importance of energy storage technology. The galvanostatic intermittent titration technique (GITT) has become a crucial method among various electrochemical analyses for battery research. During one titration step in GITT, which consists of a constant current pulse followed by a relaxation period, transient and steady-state voltage changes were measured. It draws both thermodynamic and kinetic parameters. The diffusion coefficients of the lithium ion, open-circuit voltages, and overpotentials at various states of charge can be deduced by a series of titration steps. This mini-review details the theoretical and practical aspects of GITT analysis, from the measurement method to the derivation of the diffusivity equation for research cases according to the specific experimental purpose. This will shed light on a better understanding of electrochemical reactions and provide insight into the methods for improving lithium-ion battery performance.

전극구조설계 기반 고에너지밀도·고속충전 리튬이온배터리 제작 (Design of Structured Electrode for High Energy Densified and Fast Chargeable Lithium Ion Batteries)

  • 박수진;배창준
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.406-415
    • /
    • 2018
  • Lithium ion batteries have been widely adopted as energy storage and the LIB global market has grown fastest. However, LIB players have struggled against maximizing energy density since commercial monolithic electrodes are limited by electrolyte depletion caused by long and tortuous Li-ion diffusion pathways. Recently, new strategies designing the structure of battery electrodes strive for creating fast Li-ion path and alleviating electrolyte depletion problem in monolithic electrodes. In this paper, given the fundamental and experimental approaches, we compare the monolithic to structured electrodes and demonstrate the ways to fabricate high energy, fast chargeable Lithium ion battery.

양이온 K+, Na+, Mg2+, Ca2+, Al3+ 형태로 개질한 제올라이트에 의한 리튬 이온의 흡착 특성 (Adsorption Characteristics of Lithium Ion by Zeolite Modified in K+, Na+, Mg2+, Ca2+, and Al3+ Forms)

  • 박정민;감상규;이민규
    • 한국환경과학회지
    • /
    • 제22권12호
    • /
    • pp.1651-1660
    • /
    • 2013
  • The adsorption of lithium ion onto zeolite was investigated depending on contact time, initial concentration, cation forms, pH, and adsorption isotherms by employing batch adsorption experiment. The zeolite was converted into different forms such $K^+$, $Na^+$, $Mg^{2+}$, $Ca^{2+}$, and $Al^{3+}$. The zeolite had the higher adsorption capacity of lithium ion in $K^+$ form followed by $Na^+$, $Ca^{2+}$, $Mg^{2+}$, and $Al^{3+}$ forms, which was in accordance with their elctronegativities. The lithium ion adsorption was explained using the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms and kinetic models. Adsorption rate of lithium ion by zeolite modified in $K^+$ form was controlled by pseudo-second-order and particle diffusion kinetic models. The maximum adsorption capacity obtained from Langmuir isotherm was 17.0 mg/g for zeolite modified in $K^+$ form. The solution pH influenced significantly the lithium ions adsorption capacity and best results were obtained at pH 5-10.

리튬전지용 에테르가 기능화된 이온성 액체 기반 이온성 액정 전해질의 전기화학적 특성 (Ionic Liquid Crystal Electrolytes based on Ether Functionalized Ionic Liquid for Lithium Batteries)

  • 김일진;김기수;이진홍
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.305-309
    • /
    • 2020
  • 본 연구에서는 에테르가 기능화된 이온성 액체인 [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite)와 리튬염인 LiTf2N (lithium bis(trifluoromethanesulfonyl)imide)을 혼합하였고, 리튬염의 함량을 조절하여 전해질을 특성을 조사하였다. 제조된 전해질은 리튬염 혼합에 따라 불투명해지고 흐름성이 제한된 열방성 액정을 형성하였으며, 이때 리튬염의 함량에 따라 형성되는 이온성 액정의 자기조립구조와 이온 전도 현상을 다양한 분광학적 분석을 통해 조사하였다. 그 결과 이온성 액정의 향상된 이온전도도는 정렬된 구조를 통한 이온 전도 특성과 관계가 있음을 확인하였으며, 리튬이온전지 특성 평가에서 우수한 전기화학적 특성을 나타냄을 확인하였다.

SEI 성장 모델을 이용한 리튬 이온 배터리의 캘린더 노화 연구 (Study of the Calendar Aging of Lithium-Ion Batteries Using SEI Growth Models)

  • 전동협;채병만;이상우
    • 공업화학
    • /
    • 제35권1호
    • /
    • pp.48-53
    • /
    • 2024
  • 전기화학 기반의 SEI 성장 모델을 이용하여 리튬이온 배터리의 캘린더 노화 및 장기 수명을 예측하였다. 네 가지 유형의 장기 SEI 성장 모델(용매 확산 제한 모델, 전자 이동 제한 모델, 리튬-간극 확산 제한 모델, 반응 제한 모델)을 적용하여 수치해석이 이루어졌고, 캘린더 에이징 동안의 용량 감소와 리튬 재고 손실을 계산하였다. 수치해석 결과, 전자 이동 제한 모델과 리튬-간극 확산 제한 모델이 낮은 용량 감소를 보였으며, 용매 확산 제한 모델과 반응 제한 모델은 10년이내에 80%의 용량 감소를 보였다. 캘린더 노화 중 저온 보관 시 SEI의 성장을 저하시켜 용량 감소가 적었다. 사이클링 중 C-rate가 증가할수록 SEI 두께 증가로 수명 하락이 크게 나타났으나 그 차이는 크지 않았다.

FEMLAB을 이용한 리튬이온전지의 발열특성 평가모델링 (Evaluation Modeling Heat Generation Behavior for Lithium-ion Battery Using FEMLAB)

  • 이대현;윤도영
    • 청정기술
    • /
    • 제18권3호
    • /
    • pp.320-324
    • /
    • 2012
  • 본 연구에서는 리튬이온전지의 방전특성에 따른 열발생 속도를 계산하여 전지의 특성을 평가하였다. 이를 위하여 Butler-Volmer 식을 지배방정식으로 하여, 유사 2차원 모델링을 적용하고, 편미분 연산자인 FEMLAB을 이용하여 전산모사를 수행하였다. 전류밀도를 5 $A/m^2$에서 25 $A/m^2$까지 증가시켜 계산을 수행한 결과, 전류밀도가 증가함에 따라 전극표면에서 고체상 리튬의 소모량이 증가되는 것으로 나타났다. 이로 인한 확산제한의 발생시점이 단축되었으며, 동시에 리튬이온전지의 내부 전위가 컷오프 전위에 도달하는 시점에서 열발생 속도가 급격하게 증가되는 현상을 보여주었다.