DOI QR코드

DOI QR Code

Principles and Applications of Galvanostatic Intermittent Titration Technique for Lithium-ion Batteries

  • Kim, Jaeyoung (Department of Energy Science, Sungkyunkwan University) ;
  • Park, Sangbin (Department of Energy Science, Sungkyunkwan University) ;
  • Hwang, Sunhyun (Department of Energy Science, Sungkyunkwan University) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
  • Received : 2021.08.27
  • Accepted : 2021.09.19
  • Published : 2022.02.28

Abstract

Lithium-ion battery development is one of the most active contemporary research areas, gaining more attention in recent times, following the increasing importance of energy storage technology. The galvanostatic intermittent titration technique (GITT) has become a crucial method among various electrochemical analyses for battery research. During one titration step in GITT, which consists of a constant current pulse followed by a relaxation period, transient and steady-state voltage changes were measured. It draws both thermodynamic and kinetic parameters. The diffusion coefficients of the lithium ion, open-circuit voltages, and overpotentials at various states of charge can be deduced by a series of titration steps. This mini-review details the theoretical and practical aspects of GITT analysis, from the measurement method to the derivation of the diffusivity equation for research cases according to the specific experimental purpose. This will shed light on a better understanding of electrochemical reactions and provide insight into the methods for improving lithium-ion battery performance.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C2003731).

References

  1. R. Schmuch, R. Wagner, G. Horpel, T. Placke, M. Winter, Nat. Energy, 2018, 3(4), 267-278. https://doi.org/10.1038/s41560-018-0107-2
  2. D. Larcher, J.-M. Tarascon, Nat. Chem., 2015, 7(1), 19-29. https://doi.org/10.1038/nchem.2085
  3. J.B. Goodenough, K.-S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176. https://doi.org/10.1021/ja3091438
  4. M.S. Whittingham, Science, 1976, 192(4244), 1126-1127. https://doi.org/10.1126/science.192.4244.1126
  5. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull., 1980, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
  6. G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Nature, 2019, 575(7781), 75-86. https://doi.org/10.1038/s41586-019-1682-5
  7. W. Lee, J. Kim, S. Yun, W. Choi, H. Kim, W.-S. Yoon, Energy Environ. Sci., 2020, 13(12), 4406-4449. https://doi.org/10.1039/D0EE01277G
  8. T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J.M. Kim, M.S. Park, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25. https://doi.org/10.33961/jecst.2019.00619
  9. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. Educ., 2018, 95(2), 197-206. https://doi.org/10.1021/acs.jchemed.7b00361
  10. W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 1-13. https://doi.org/10.33961/jecst.2019.00528
  11. Q. Wang, S. Mariyappan, G. Rousse, A. V. Morozov, B. Porcheron, R. Dedryvere, J. Wu, W. Yang, L. Zhang, M. Chakir, M. Avdeev, M. Deschamps, Y.-S. Yu, J. Cabana, M.-L. Doublet, A.M. Abakumov, J.-M. Tarascon, Nat. Mater., 2021, 20(3), 353-361. https://doi.org/10.1038/s41563-020-00870-8
  12. R. Wang, X. Chen, Z. Huang, J. Yang, F. Liu, M. Chu, T. Liu, C. Wang, W. Zhu, S. Li, S. Li, J. Zheng, J. Chen, L. He, L. Jin, F. Pan, Y. Xiao, Nat. Commun., 2021, 12(1), 1-10. https://doi.org/10.1038/s41467-020-20314-w
  13. C. Wang, R. Yu, S. Hwang, J. Liang, X. Li, C. Zhao, Y. Sun, J. Wang, N. Holmes, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, D. Su, X. Sun, Energy Storage Mater., 2020, 30, 98-103. https://doi.org/10.1016/j.ensm.2020.05.007
  14. N. Yabuuchi, S. Kumar, H.H. Li, Y.-T. Kim, Y. Shao-Horn, J. Electrochem. Soc., 2007, 154(6), A566 https://doi.org/10.1149/1.2724734
  15. X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Electrochim. Acta, 2010, 55(7), 2384-2390. https://doi.org/10.1016/j.electacta.2009.11.096
  16. K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Electrochim. Acta, 2003, 48(18), 2691-2703. https://doi.org/10.1016/S0013-4686(03)00317-7
  17. L. Hong, L. Li, Y.K. Chen-Wiegart, J. Wang, K. Xiang, L. Gan, W. Li, F. Meng, F. Wang, J. Wang, Y.-M. Chiang, S. Jin, M. Tang, Nat. Commun., 2017, 8(1), 1-13. https://doi.org/10.1038/s41467-016-0009-6
  18. W. Weppner, R.A. Huggins, J. Electrochem. Soc., 1977, 124(10), 1569-1578. https://doi.org/10.1149/1.2133112
  19. J. Crank, The mathematics of diffusion, Oxford university press, New York, 1979.
  20. Z. Wei, D. Wang, M. Li, Y. Gao, C. Wang, G. Chen, F. Du, Adv. Energy Mater., 2018, 8(27), 1801102. https://doi.org/10.1002/aenm.201801102
  21. P. Zhou, X. Liu, J. Weng, L. Wang, X. Wu, Z. Miao, J. Zhao, J. Zhou, S. Zhuo, J. Mater. Chem. A, 2019, 7(2), 657-663. https://doi.org/10.1039/C8TA07842D
  22. S.N. Lim, J.Y. Seo, D.S. Jung, W. Ahn, H.S. Song, S.-H. Yeon, S.B. Park, J. Alloys Compd., 2015, 623, 55-61. https://doi.org/10.1016/j.jallcom.2014.09.203
  23. K.M. Shaju, G. V. Subba Rao, B.V.R. Chowdari, J. Mater. Chem., 2003, 13(1), 106-113. https://doi.org/10.1039/b207407a
  24. Z. Li, F. Du, X. Bie, D. Zhang, Y. Cai, X. Cui, C. Wang, G. Chen, Y. Wei, J. Phys. Chem. C, 2010, 114(51), 22751-22757. https://doi.org/10.1021/jp1088788
  25. S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. Duan, W. Wang, M. Rao, J. Zheng, X. Wang, F. Pan, Adv. Energy Mater., 2016, 6(4), 1501309. https://doi.org/10.1002/aenm.201501309
  26. K. Tang, X. Yu, J. Sun, H. Li, X. Huang, Electrochim. Acta, 2011, 56(13), 4869-4875. https://doi.org/10.1016/j.electacta.2011.02.119
  27. Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y.A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareno, Y. Ren, W. Lu, Y. Li, Nat. Energy, 2018, 3(11), 936-943. https://doi.org/10.1038/s41560-018-0180-6
  28. W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.-H. Ryou, W.-S. Yoon, Adv. Energy Mater., 2018, 8(4), 1701788. https://doi.org/10.1002/aenm.201701788
  29. C. Hong, Q. Leng, J. Zhu, S. Zheng, H. He, Y. Li, R. Liu, J. Wan, Y. Yang, J. Mater. Chem. A, 2020, 8(17), 8540-8547. https://doi.org/10.1039/d0ta00555j
  30. S. Lou, Q. Liu, F. Zhang, Q. Liu, Z. Yu, T. Mu, Y. Zhao, J. Borovilas, Y. Chen, M. Ge, X. Xiao, W.-K. Lee, G. Yin, Y. Yang, X. Sun, J. Wang, Nat. Commun., 2020, 11(1), 1-10. https://doi.org/10.1038/s41467-019-13993-7
  31. J. Kim, W. Lee, J. Seok, E. Lee, W. Choi, H. Park, S. Yun, M. Kim, J. Lim, W.-S. Yoon, J. Energy Chem., 2022, 66, 226-236. https://doi.org/10.1016/j.jechem.2021.08.017
  32. A. Hess, Q. Roode-Gutzmer, C. Heubner, M. Schneider, A. Michaelis, M. Bobeth, G. Cuniberti, J. Power Sources, 2015, 299, 156-161. https://doi.org/10.1016/j.jpowsour.2015.07.080
  33. G. Assat, C. Delacourt, D.A.D. Corte, J.-M. Tarascon, J. Electrochem. Soc., 2016, 163(14), A2965-A2976. https://doi.org/10.1149/2.0531614jes
  34. E. Lim, H. Shim, S. Fleischmann, V. Presser, J. Mater. Chem. A, 2018, 6(20), 9480-9488. https://doi.org/10.1039/C8TA02293C
  35. J.-S. Hong, J.R. Selman, J. Electrochem. Soc., 2000, 147(9), 3190. https://doi.org/10.1149/1.1393882
  36. A.J. Gmitter, F. Badway, S. Rangan, R.A. Bartynski, A. Halajko, N. Pereira, G.G. Amatucci, J. Mater. Chem., 2010, 20(20), 4149-4161. https://doi.org/10.1039/b923908a
  37. E. Deiss, Electrochim. Acta, 2005, 50(14), 2927-2932. https://doi.org/10.1016/j.electacta.2004.11.042
  38. Y. Zhu, C. Wang, J. Phys. Chem. C, 2010, 114(6), 2830-2841. https://doi.org/10.1021/jp9113333
  39. K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Nature, 2018, 559(7715), 556-563. https://doi.org/10.1038/s41586-018-0347-0
  40. J.S. Horner, G. Whang, D.S. Ashby, I. V. Kolesnichenko, T.N. Lambert, B.S. Dunn, A.A. Talin, S.A. Roberts, arXiv, 2021, 2107.05835.
  41. P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics, 2002, 148(1-2), 45-51. https://doi.org/10.1016/S0167-2738(02)00134-0
  42. N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen, I. Lieberwirth, Solid State Ionics, 2009, 180(2-3), 222-225. https://doi.org/10.1016/j.ssi.2008.12.015
  43. S. Yang, X. Wang, X. Yang, Y. Bai, Z. Liu, H. Shu, Q. Wei, Electrochim. Acta, 2012, 66, 88-93. https://doi.org/10.1016/j.electacta.2012.01.061
  44. T. Schied, A. Nickol, C. Heubner, M. Schneider, A. Michaelis, M. Bobeth, G. Cuniberti, ChemPhysChem, 2021, 22(9), 885-893. https://doi.org/10.1002/cphc.202001025
  45. C. Liu, Z.G. Neale, G. Cao, Mater. Today, 2016, 19(2), 109-123. https://doi.org/10.1016/j.mattod.2015.10.009
  46. J. K. Park, Principles and Applications of Lithium Secondary Batteries, Wiley-VCH Germany, 2012.
  47. D. Kim, J.-M. Lim, Y.-G. Lim, J.-S. Yu, M.-S. Park, M. Cho, K. Cho, Chem. Mater., 2015, 27(18), 6450-6456. https://doi.org/10.1021/acs.chemmater.5b02697
  48. P.-C. Tsai, B. Wen, M. Wolfman, M.-J. Choe, M.S. Pan, L. Su, K. Thornton, J. Cabana, Y.-M. Chiang, Energy Environ. Sci., 2018, 11(4), 860-871. https://doi.org/10.1039/c8ee00001h
  49. J. Yang, C. Du, T. Wang, Y. Gao, X. Cheng, P. Zuo, Y. Ma, J. Wang, G. Yin, J. Xie, B. Lei, Energies, 2018, 11(12), 3444. https://doi.org/10.3390/en11123444
  50. F. Zheng, Y. Xing, J. Jiang, B. Sun, J. Kim, M. Pecht, Appl. Energy, 2016, 183, 513-525. https://doi.org/10.1016/j.apenergy.2016.09.010
  51. P. Novak, Electrochim. Acta, 1985, 30(12), 1687-1692. https://doi.org/10.1016/0013-4686(85)87015-8
  52. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.-M. Tarascon, Nat. Mater., 2006, 5(7), 567-573. https://doi.org/10.1038/nmat1672
  53. Z.H. Cui, X.X. Guo, H. Li, Energy Environ. Sci., 2015, 8(1), 182-187. https://doi.org/10.1039/C4EE01777C
  54. G. Jiang, H. Han, W. Zhuang, X. Xu, S. Kaskel, F. Xu, H. Wang, J. Mater. Chem. A, 2019, 7(29), 17561-17569. https://doi.org/10.1039/c9ta03391b
  55. J. Pan, Y. Zhang, L. Li, Z. Cheng, Y. Li, X. Yang, J. Yang, Y. Qian, Small Methods, 2019, 3(10), 1900231. https://doi.org/10.1002/smtd.201900231
  56. S.H. Lee, G. Yoo, J. Cho, S. Ryu, Y.S. Kim, J. Yoo, J. Alloys Compd., 2020, 829, 154566. https://doi.org/10.1016/j.jallcom.2020.154566
  57. O.B. Chae, S. Park, J.H. Ryu, S.M. Oh, J. Electrochem. Soc., 2013, 160(1), A11-A14. https://doi.org/10.1149/2.024301jes
  58. B. Gerelt-Od, H. Kim, U.J. Lee, J. Kim, N. Kim, Y.J. Han, H. Son, S. Yoon, J. Electrochem. Soc., 2018, 165(2), A168-A174. https://doi.org/10.1149/2.0781802jes