Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00836

Principles and Applications of Galvanostatic Intermittent Titration Technique for Lithium-ion Batteries  

Kim, Jaeyoung (Department of Energy Science, Sungkyunkwan University)
Park, Sangbin (Department of Energy Science, Sungkyunkwan University)
Hwang, Sunhyun (Department of Energy Science, Sungkyunkwan University)
Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.1, 2022 , pp. 19-31 More about this Journal
Abstract
Lithium-ion battery development is one of the most active contemporary research areas, gaining more attention in recent times, following the increasing importance of energy storage technology. The galvanostatic intermittent titration technique (GITT) has become a crucial method among various electrochemical analyses for battery research. During one titration step in GITT, which consists of a constant current pulse followed by a relaxation period, transient and steady-state voltage changes were measured. It draws both thermodynamic and kinetic parameters. The diffusion coefficients of the lithium ion, open-circuit voltages, and overpotentials at various states of charge can be deduced by a series of titration steps. This mini-review details the theoretical and practical aspects of GITT analysis, from the measurement method to the derivation of the diffusivity equation for research cases according to the specific experimental purpose. This will shed light on a better understanding of electrochemical reactions and provide insight into the methods for improving lithium-ion battery performance.
Keywords
Lithium-ion Batteries; Galvanostatic Intermittent Titration Technique; Battery Characteristics;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J.S. Horner, G. Whang, D.S. Ashby, I. V. Kolesnichenko, T.N. Lambert, B.S. Dunn, A.A. Talin, S.A. Roberts, arXiv, 2021, 2107.05835.
2 S. Yang, X. Wang, X. Yang, Y. Bai, Z. Liu, H. Shu, Q. Wei, Electrochim. Acta, 2012, 66, 88-93.   DOI
3 T. Schied, A. Nickol, C. Heubner, M. Schneider, A. Michaelis, M. Bobeth, G. Cuniberti, ChemPhysChem, 2021, 22(9), 885-893.   DOI
4 C. Liu, Z.G. Neale, G. Cao, Mater. Today, 2016, 19(2), 109-123.   DOI
5 J. K. Park, Principles and Applications of Lithium Secondary Batteries, Wiley-VCH Germany, 2012.
6 D. Kim, J.-M. Lim, Y.-G. Lim, J.-S. Yu, M.-S. Park, M. Cho, K. Cho, Chem. Mater., 2015, 27(18), 6450-6456.   DOI
7 P.-C. Tsai, B. Wen, M. Wolfman, M.-J. Choe, M.S. Pan, L. Su, K. Thornton, J. Cabana, Y.-M. Chiang, Energy Environ. Sci., 2018, 11(4), 860-871.   DOI
8 J. Yang, C. Du, T. Wang, Y. Gao, X. Cheng, P. Zuo, Y. Ma, J. Wang, G. Yin, J. Xie, B. Lei, Energies, 2018, 11(12), 3444.   DOI
9 F. Zheng, Y. Xing, J. Jiang, B. Sun, J. Kim, M. Pecht, Appl. Energy, 2016, 183, 513-525.   DOI
10 P. Novak, Electrochim. Acta, 1985, 30(12), 1687-1692.   DOI
11 P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.-M. Tarascon, Nat. Mater., 2006, 5(7), 567-573.   DOI
12 N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen, I. Lieberwirth, Solid State Ionics, 2009, 180(2-3), 222-225.   DOI
13 G. Jiang, H. Han, W. Zhuang, X. Xu, S. Kaskel, F. Xu, H. Wang, J. Mater. Chem. A, 2019, 7(29), 17561-17569.   DOI
14 G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Nature, 2019, 575(7781), 75-86.   DOI
15 W. Weppner, R.A. Huggins, J. Electrochem. Soc., 1977, 124(10), 1569-1578.   DOI
16 Z. Li, F. Du, X. Bie, D. Zhang, Y. Cai, X. Cui, C. Wang, G. Chen, Y. Wei, J. Phys. Chem. C, 2010, 114(51), 22751-22757.   DOI
17 J. Crank, The mathematics of diffusion, Oxford university press, New York, 1979.
18 D. Larcher, J.-M. Tarascon, Nat. Chem., 2015, 7(1), 19-29.   DOI
19 S.H. Lee, G. Yoo, J. Cho, S. Ryu, Y.S. Kim, J. Yoo, J. Alloys Compd., 2020, 829, 154566.   DOI
20 R. Schmuch, R. Wagner, G. Horpel, T. Placke, M. Winter, Nat. Energy, 2018, 3(4), 267-278.   DOI
21 J.B. Goodenough, K.-S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176.   DOI
22 T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J.M. Kim, M.S. Park, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25.   DOI
23 M.S. Whittingham, Science, 1976, 192(4244), 1126-1127.   DOI
24 K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull., 1980, 15(6), 783-789.   DOI
25 W. Lee, J. Kim, S. Yun, W. Choi, H. Kim, W.-S. Yoon, Energy Environ. Sci., 2020, 13(12), 4406-4449.   DOI
26 E. Lim, H. Shim, S. Fleischmann, V. Presser, J. Mater. Chem. A, 2018, 6(20), 9480-9488.   DOI
27 P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics, 2002, 148(1-2), 45-51.   DOI
28 W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 1-13.   DOI
29 N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. Educ., 2018, 95(2), 197-206.   DOI
30 Q. Wang, S. Mariyappan, G. Rousse, A. V. Morozov, B. Porcheron, R. Dedryvere, J. Wu, W. Yang, L. Zhang, M. Chakir, M. Avdeev, M. Deschamps, Y.-S. Yu, J. Cabana, M.-L. Doublet, A.M. Abakumov, J.-M. Tarascon, Nat. Mater., 2021, 20(3), 353-361.   DOI
31 R. Wang, X. Chen, Z. Huang, J. Yang, F. Liu, M. Chu, T. Liu, C. Wang, W. Zhu, S. Li, S. Li, J. Zheng, J. Chen, L. He, L. Jin, F. Pan, Y. Xiao, Nat. Commun., 2021, 12(1), 1-10.   DOI
32 K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Electrochim. Acta, 2003, 48(18), 2691-2703.   DOI
33 C. Wang, R. Yu, S. Hwang, J. Liang, X. Li, C. Zhao, Y. Sun, J. Wang, N. Holmes, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, D. Su, X. Sun, Energy Storage Mater., 2020, 30, 98-103.   DOI
34 N. Yabuuchi, S. Kumar, H.H. Li, Y.-T. Kim, Y. Shao-Horn, J. Electrochem. Soc., 2007, 154(6), A566   DOI
35 X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Electrochim. Acta, 2010, 55(7), 2384-2390.   DOI
36 L. Hong, L. Li, Y.K. Chen-Wiegart, J. Wang, K. Xiang, L. Gan, W. Li, F. Meng, F. Wang, J. Wang, Y.-M. Chiang, S. Jin, M. Tang, Nat. Commun., 2017, 8(1), 1-13.   DOI
37 Z. Wei, D. Wang, M. Li, Y. Gao, C. Wang, G. Chen, F. Du, Adv. Energy Mater., 2018, 8(27), 1801102.   DOI
38 P. Zhou, X. Liu, J. Weng, L. Wang, X. Wu, Z. Miao, J. Zhao, J. Zhou, S. Zhuo, J. Mater. Chem. A, 2019, 7(2), 657-663.   DOI
39 S.N. Lim, J.Y. Seo, D.S. Jung, W. Ahn, H.S. Song, S.-H. Yeon, S.B. Park, J. Alloys Compd., 2015, 623, 55-61.   DOI
40 K.M. Shaju, G. V. Subba Rao, B.V.R. Chowdari, J. Mater. Chem., 2003, 13(1), 106-113.   DOI
41 S. Lou, Q. Liu, F. Zhang, Q. Liu, Z. Yu, T. Mu, Y. Zhao, J. Borovilas, Y. Chen, M. Ge, X. Xiao, W.-K. Lee, G. Yin, Y. Yang, X. Sun, J. Wang, Nat. Commun., 2020, 11(1), 1-10.   DOI
42 S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. Duan, W. Wang, M. Rao, J. Zheng, X. Wang, F. Pan, Adv. Energy Mater., 2016, 6(4), 1501309.   DOI
43 J. Pan, Y. Zhang, L. Li, Z. Cheng, Y. Li, X. Yang, J. Yang, Y. Qian, Small Methods, 2019, 3(10), 1900231.   DOI
44 B. Gerelt-Od, H. Kim, U.J. Lee, J. Kim, N. Kim, Y.J. Han, H. Son, S. Yoon, J. Electrochem. Soc., 2018, 165(2), A168-A174.   DOI
45 O.B. Chae, S. Park, J.H. Ryu, S.M. Oh, J. Electrochem. Soc., 2013, 160(1), A11-A14.   DOI
46 Z.H. Cui, X.X. Guo, H. Li, Energy Environ. Sci., 2015, 8(1), 182-187.   DOI
47 K. Tang, X. Yu, J. Sun, H. Li, X. Huang, Electrochim. Acta, 2011, 56(13), 4869-4875.   DOI
48 Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y.A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareno, Y. Ren, W. Lu, Y. Li, Nat. Energy, 2018, 3(11), 936-943.   DOI
49 W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.-H. Ryou, W.-S. Yoon, Adv. Energy Mater., 2018, 8(4), 1701788.   DOI
50 C. Hong, Q. Leng, J. Zhu, S. Zheng, H. He, Y. Li, R. Liu, J. Wan, Y. Yang, J. Mater. Chem. A, 2020, 8(17), 8540-8547.   DOI
51 J.-S. Hong, J.R. Selman, J. Electrochem. Soc., 2000, 147(9), 3190.   DOI
52 J. Kim, W. Lee, J. Seok, E. Lee, W. Choi, H. Park, S. Yun, M. Kim, J. Lim, W.-S. Yoon, J. Energy Chem., 2022, 66, 226-236.   DOI
53 A. Hess, Q. Roode-Gutzmer, C. Heubner, M. Schneider, A. Michaelis, M. Bobeth, G. Cuniberti, J. Power Sources, 2015, 299, 156-161.   DOI
54 G. Assat, C. Delacourt, D.A.D. Corte, J.-M. Tarascon, J. Electrochem. Soc., 2016, 163(14), A2965-A2976.   DOI
55 A.J. Gmitter, F. Badway, S. Rangan, R.A. Bartynski, A. Halajko, N. Pereira, G.G. Amatucci, J. Mater. Chem., 2010, 20(20), 4149-4161.   DOI
56 E. Deiss, Electrochim. Acta, 2005, 50(14), 2927-2932.   DOI
57 Y. Zhu, C. Wang, J. Phys. Chem. C, 2010, 114(6), 2830-2841.   DOI
58 K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Nature, 2018, 559(7715), 556-563.   DOI