Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.3.852

Prediction of Lithium Diffusion Coefficient and Rate Performance by using the Discharge Curves of LiFePO4 Materials  

Yu, Seung-Ho (Advanced Battery Center, Korea Institute of Science and Technology)
Park, Chang-Kyoo (Advanced Battery Center, Korea Institute of Science and Technology)
Jang, Ho (Department of Materials Science and Engineering, Korea University)
Shin, Chee-Burm (Department of Chemical Engineering, Ajou University)
Cho, Won-Il (Advanced Battery Center, Korea Institute of Science and Technology)
Publication Information
Abstract
The lithium ion diffusion coefficients of bare, carbon-coated and Cr-doped $LiFePO_4$ were obtained by fitting the discharge curves of each half cell with Li metal anode. Diffusion losses at discharge curves were acquired with experiment data and fitted to equations. Theoretically fitted equations showed good agreement with experimental results. Moreover, theoretical equations are able to predict lithium diffusion coefficient and discharge curves at various discharge rates. The obtained diffusion coefficients were similar to the true diffusion coefficient of phase transformation electrodes. Lithium ion diffusion is one of main factors that determine voltage drop in a half cell with $LiFePO_4$ cathode and Li metal anode. The high diffusion coefficient of carbon-coated and Cr-doped $LiFePO_4$ resulted in better performance at the discharge process. The performance at high discharge rate was improved much as diffusion coefficient increased.
Keywords
$LiFePO_4$; Carbon coating; Cr doping; Diffusion coefficient; Fitting of the discharge curve;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.   DOI   ScienceOn
2 Wang, D.; Li, H.; Shi, S.; Huang, X.; Chen, L. Electrochimica Acta 2005, 50, 2955.   DOI   ScienceOn
3 Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 195108.   DOI   ScienceOn
4 Wen, C. J.; Boukamp, B. A.; Huggins, R. A. J. Electrochem. Soc. 1979, 126, 2258.   DOI
5 Ho, C.; Raistrick, I. D.; Huggins, R. A. J. Electrochem. Soc. 1980, 127, 345.
6 Zhu, Y.; Wang, C. J. Phys. Chem. C 2010, 114, 2830.   DOI   ScienceOn
7 Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ionics 2002, 148, 45.   DOI   ScienceOn
8 Churikova, A. V.; Ivanishchev, A. V.; Ivanishcheva, I. A.; Sycheva, V. O.; Khasanova, N. R.; Antipov, E. V. Electrochimica Acta2010, 55, 2939.   DOI   ScienceOn
9 Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. Electrochimica Acta 2009, 54, 4631.   DOI   ScienceOn
10 Shin, H. C.; Park, S. B.; Jang, H.; Chung, K. Y.; Cho, W. I.; Kim, C. S.; Cho, B. W. Electrochimica. Acta 2008, 53, 7946.   DOI   ScienceOn
11 Bisquert, J.; Vikhrenko, V. S. Electrochimica Acta 2002, 47, 3977.   DOI   ScienceOn
12 Srinivasan, V.; Newman, J. J. Electrochemical Soc. 2004, 151(10), A1517.   DOI   ScienceOn
13 Prosini, P. P. J. Electrochem. Soc. 2005, 152(10), A1925.   DOI   ScienceOn
14 Pasquali, M.; Dell’Era, A.; Prosini, P. P. J. Solid State Electrochem. 2009, 13, 1859.   DOI
15 Zhdanov, V. P. Surf. Sci. 1985, 149, L13.
16 Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517.   DOI   ScienceOn
17 Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem, Solid State Lett. 2001, 4, A170.   DOI   ScienceOn
18 Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184.   DOI   ScienceOn