Browse > Article
http://dx.doi.org/10.31613/ceramist.2018.21.4.08

Design of Structured Electrode for High Energy Densified and Fast Chargeable Lithium Ion Batteries  

Park, Sujin (3D Printing Materials Center, Korea Institute of Materials Science (KIMS))
Bae, Chang-Jun (3D Printing Materials Center, Korea Institute of Materials Science (KIMS))
Publication Information
Ceramist / v.21, no.4, 2018 , pp. 406-415 More about this Journal
Abstract
Lithium ion batteries have been widely adopted as energy storage and the LIB global market has grown fastest. However, LIB players have struggled against maximizing energy density since commercial monolithic electrodes are limited by electrolyte depletion caused by long and tortuous Li-ion diffusion pathways. Recently, new strategies designing the structure of battery electrodes strive for creating fast Li-ion path and alleviating electrolyte depletion problem in monolithic electrodes. In this paper, given the fundamental and experimental approaches, we compare the monolithic to structured electrodes and demonstrate the ways to fabricate high energy, fast chargeable Lithium ion battery.
Keywords
structured electrode; lithium ion battery; high energy density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Tarascon, M. Armand, Nature 2001, 414, 359.   DOI
2 M. DOYLE , J. NEWMAN Journal of Applied Electrochemistry 1997, 27, 846-856.   DOI
3 H. Zheng, J. Li, X. Song, G. Liu, V. S. Battaglia, Electrochimica Acta 2012, 71, 258-265.   DOI
4 Z. Du, D. L. Wood, C. Daniel, S. Kalnaus, J. Li, Journal of Applied Electrochemistry 2017, 47, 405-415.   DOI
5 A. Vu, Y. Qian, A. Stein, Advanced Energy Materials 2012, 2, 1056-1085.   DOI
6 J. B. Goodenough, in Lithium Ion Batteries - Fundamentals and Performance Wiley-VCH, WeinheimGermany 1998.
7 H. Zhang, X. Yu, P. V. Braun, Nature nanotechnology 2011, 6, 277-281.   DOI
8 C.-J. Bae, C. K. Erdonmez, J. W. Halloran, Y.-M. Chiang, Advanced Materials 2013, 25, 1254-1258.   DOI
9 G. H. Lee, J. W. Lee, J. I. Choi, S. J. Kim, Y.-H. Kim, J. K. Kang, Advanced Functional Materials 2016, 26, 5139-5148.   DOI
10 L. R. F. A. J. Bard, Electrochaemical Methods: Fundamentals and Applications, 2nd ed, Wiley, 2000.
11 a, X. Li, T. Fan, Z. Liu, J. Ding, Q. Guo, D. Zhang, Journal of the European Ceramic Society 2006, 26, 3657-3664   DOI
12 K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, J. A. Lewis, Advanced Materials 2013, 25, 4539-4543.   DOI
13 C.-J. Bae, A. Ramachandran, K. Chung, S. Park, J. Korean Ceram. Soc 2017, 54, 470-477.   DOI
14 S. Park, N. S. Nenov, A. Ramachandran, K. Chung, S. Hoon Lee, J. Yoo, J.-g. Yeo, C.-J. Bae, Energy Technology 2018, 6, 2058-2064.   DOI
15 L. E. Schmidt, Y. Leterrier, J.-M. Vesin, M. Wilhelm, J.-A. E. Manson, Macromolecular Materials and Engineering 2005, 290, 1115-1124.   DOI
16 K. P. Lee, N. C. Chromey, R. Culik, J. R. Barnes, P. W. Schneider, Fundamental and Applied Toxicology 1987, 9, 222-235.   DOI
17 C.-J. Bae, A. B. Diggs, A. Ramachandran, in Additive Manufacturing (Eds.: J. Zhang, Y.-G. Jung), Butterworth-Heinemann, 2018, pp. 181-213.
18 T.-M. G. Chu, J. W. Halloran, Journal of the American Ceramic Society 2000, 83, 2375-2380.
19 b, Z. Liu, T. Fan, D. Zhang, Journal of the American Ceramic Society 2006, 89, 662-665.   DOI