DOI QR코드

DOI QR Code

Design of Structured Electrode for High Energy Densified and Fast Chargeable Lithium Ion Batteries

전극구조설계 기반 고에너지밀도·고속충전 리튬이온배터리 제작

  • Park, Sujin (3D Printing Materials Center, Korea Institute of Materials Science (KIMS)) ;
  • Bae, Chang-Jun (3D Printing Materials Center, Korea Institute of Materials Science (KIMS))
  • 박수진 (재료연구소 3D프린팅소재연구센터) ;
  • 배창준 (재료연구소 3D프린팅소재연구센터)
  • Received : 2018.12.03
  • Accepted : 2018.12.18
  • Published : 2018.12.30

Abstract

Lithium ion batteries have been widely adopted as energy storage and the LIB global market has grown fastest. However, LIB players have struggled against maximizing energy density since commercial monolithic electrodes are limited by electrolyte depletion caused by long and tortuous Li-ion diffusion pathways. Recently, new strategies designing the structure of battery electrodes strive for creating fast Li-ion path and alleviating electrolyte depletion problem in monolithic electrodes. In this paper, given the fundamental and experimental approaches, we compare the monolithic to structured electrodes and demonstrate the ways to fabricate high energy, fast chargeable Lithium ion battery.

Keywords

References

  1. J. M. Tarascon, M. Armand, Nature 2001, 414, 359. https://doi.org/10.1038/35104644
  2. M. DOYLE , J. NEWMAN Journal of Applied Electrochemistry 1997, 27, 846-856. https://doi.org/10.1023/A:1018481030499
  3. H. Zheng, J. Li, X. Song, G. Liu, V. S. Battaglia, Electrochimica Acta 2012, 71, 258-265. https://doi.org/10.1016/j.electacta.2012.03.161
  4. Z. Du, D. L. Wood, C. Daniel, S. Kalnaus, J. Li, Journal of Applied Electrochemistry 2017, 47, 405-415. https://doi.org/10.1007/s10800-017-1047-4
  5. A. Vu, Y. Qian, A. Stein, Advanced Energy Materials 2012, 2, 1056-1085. https://doi.org/10.1002/aenm.201200320
  6. J. B. Goodenough, in Lithium Ion Batteries - Fundamentals and Performance Wiley-VCH, WeinheimGermany 1998.
  7. H. Zhang, X. Yu, P. V. Braun, Nature nanotechnology 2011, 6, 277-281. https://doi.org/10.1038/nnano.2011.38
  8. C.-J. Bae, C. K. Erdonmez, J. W. Halloran, Y.-M. Chiang, Advanced Materials 2013, 25, 1254-1258. https://doi.org/10.1002/adma.201204055
  9. G. H. Lee, J. W. Lee, J. I. Choi, S. J. Kim, Y.-H. Kim, J. K. Kang, Advanced Functional Materials 2016, 26, 5139-5148. https://doi.org/10.1002/adfm.201601355
  10. L. R. F. A. J. Bard, Electrochaemical Methods: Fundamentals and Applications, 2nd ed, Wiley, 2000.
  11. a, X. Li, T. Fan, Z. Liu, J. Ding, Q. Guo, D. Zhang, Journal of the European Ceramic Society 2006, 26, 3657-3664 https://doi.org/10.1016/j.jeurceramsoc.2005.10.015
  12. b, Z. Liu, T. Fan, D. Zhang, Journal of the American Ceramic Society 2006, 89, 662-665. https://doi.org/10.1111/j.1551-2916.2005.00741.x
  13. K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, J. A. Lewis, Advanced Materials 2013, 25, 4539-4543. https://doi.org/10.1002/adma.201301036
  14. C.-J. Bae, A. Ramachandran, K. Chung, S. Park, J. Korean Ceram. Soc 2017, 54, 470-477. https://doi.org/10.4191/kcers.2017.54.6.12
  15. S. Park, N. S. Nenov, A. Ramachandran, K. Chung, S. Hoon Lee, J. Yoo, J.-g. Yeo, C.-J. Bae, Energy Technology 2018, 6, 2058-2064. https://doi.org/10.1002/ente.201800279
  16. L. E. Schmidt, Y. Leterrier, J.-M. Vesin, M. Wilhelm, J.-A. E. Manson, Macromolecular Materials and Engineering 2005, 290, 1115-1124. https://doi.org/10.1002/mame.200500229
  17. K. P. Lee, N. C. Chromey, R. Culik, J. R. Barnes, P. W. Schneider, Fundamental and Applied Toxicology 1987, 9, 222-235. https://doi.org/10.1016/0272-0590(87)90045-5
  18. C.-J. Bae, A. B. Diggs, A. Ramachandran, in Additive Manufacturing (Eds.: J. Zhang, Y.-G. Jung), Butterworth-Heinemann, 2018, pp. 181-213.
  19. T.-M. G. Chu, J. W. Halloran, Journal of the American Ceramic Society 2000, 83, 2375-2380.