DOI QR코드

DOI QR Code

Evaluation Modeling Heat Generation Behavior for Lithium-ion Battery Using FEMLAB

FEMLAB을 이용한 리튬이온전지의 발열특성 평가모델링

  • Lee, Dae-Hyun (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
  • 이대현 (광운대학교 화학공학과, 녹색기술연구소) ;
  • 윤도영 (광운대학교 화학공학과, 녹색기술연구소)
  • Received : 2012.06.14
  • Accepted : 2012.07.10
  • Published : 2012.09.30

Abstract

In the present study, the discharge characteristics of a lithium-ion battery was evaluated to calculate the rate of heat generation under various discharge rates by mathematical modeling. The modeling and simulation of a pseudo-two dimensional ionic transport system for governing Butler-Volmer equation were carried out by using FEMLAB as a PDE (partial differential equation) solver, where the discharge rate was changed from 5 $A/m^2$ to 25 $A/m^2$. The computational results showed that the concentration of consumed solid-phase lithium at the surface of electrode was increased with increasing discharge rates. While the resulting diffusion limitation occurred shortly, it increased the rate of heat generation even more rapidly for the internal voltage to approach the cutoff voltage of the lithium-ion battery.

본 연구에서는 리튬이온전지의 방전특성에 따른 열발생 속도를 계산하여 전지의 특성을 평가하였다. 이를 위하여 Butler-Volmer 식을 지배방정식으로 하여, 유사 2차원 모델링을 적용하고, 편미분 연산자인 FEMLAB을 이용하여 전산모사를 수행하였다. 전류밀도를 5 $A/m^2$에서 25 $A/m^2$까지 증가시켜 계산을 수행한 결과, 전류밀도가 증가함에 따라 전극표면에서 고체상 리튬의 소모량이 증가되는 것으로 나타났다. 이로 인한 확산제한의 발생시점이 단축되었으며, 동시에 리튬이온전지의 내부 전위가 컷오프 전위에 도달하는 시점에서 열발생 속도가 급격하게 증가되는 현상을 보여주었다.

Keywords

References

  1. Tarascon, J.-M., and Armand, M., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414(6861), 359- 367 (2001). https://doi.org/10.1038/35104644
  2. Armand, M., and Tarascon, J. M., "Building Better Batteries," Nature, 451(7179), 652-657 (2008). https://doi.org/10.1038/451652a
  3. Doyle, M., Newman, J., Gozdz, A. S., Schmulz, C. N., and Tarascon, J.-M., "Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells," J. Electrochem. Soc., 143(6), 1890-1899 (1996). https://doi.org/10.1149/1.1836921
  4. Winter, M., and Brodd, R. J., "What Are Batteries, Fuel Cells, and Supercapacitors?," Chem. Rev., 104(10), 4245-4270 (2004). https://doi.org/10.1021/cr020730k
  5. Kumaresan, K., Sikha, G., and White, R. E., "Thermal Model for a Li-ion Cell," J. Electrochem. Soc., 155(2), A164-A171 (2008). https://doi.org/10.1149/1.2817888
  6. Valoen, L. O., and Reimers, J. N., "Transport Properties of $LiPF_{6}$-based Li-ion Battery Electrolytes," J. Electrochem. Soc., 152(5), A882-A891 (2005). https://doi.org/10.1149/1.1872737
  7. Gomadam, P. M., Weidner, J. W., Dougal, R. A., and White, R. E., "Mathematical Modeling of Lithium-ion and Nickel Battery Systems," J. Power Sour., 110(2), 267-284 (2002). https://doi.org/10.1016/S0378-7753(02)00190-8
  8. Pals, C. R., and Newman, J., "Thermal Modeling of the Lithium/ Polymer Battery," J. Electrochem. Soc., 142(10), 3274- 3281 (1995). https://doi.org/10.1149/1.2049974
  9. Lee, D.-H., and Yoon, D.-Y., "Computational Modeling of Charge-Discharge Characteristics of Lithium-ion Batteries," J. Energy Eng., 20(4), 278-285 (2011). https://doi.org/10.5855/ENERGY.2011.20.4.278