Browse > Article
http://dx.doi.org/10.5322/JESI.2013.22.12.1651

Adsorption Characteristics of Lithium Ion by Zeolite Modified in K+, Na+, Mg2+, Ca2+, and Al3+ Forms  

Park, Jeong-Min (Department of Chemical Engineering, Pukyong National University)
Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
Publication Information
Journal of Environmental Science International / v.22, no.12, 2013 , pp. 1651-1660 More about this Journal
Abstract
The adsorption of lithium ion onto zeolite was investigated depending on contact time, initial concentration, cation forms, pH, and adsorption isotherms by employing batch adsorption experiment. The zeolite was converted into different forms such $K^+$, $Na^+$, $Mg^{2+}$, $Ca^{2+}$, and $Al^{3+}$. The zeolite had the higher adsorption capacity of lithium ion in $K^+$ form followed by $Na^+$, $Ca^{2+}$, $Mg^{2+}$, and $Al^{3+}$ forms, which was in accordance with their elctronegativities. The lithium ion adsorption was explained using the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms and kinetic models. Adsorption rate of lithium ion by zeolite modified in $K^+$ form was controlled by pseudo-second-order and particle diffusion kinetic models. The maximum adsorption capacity obtained from Langmuir isotherm was 17.0 mg/g for zeolite modified in $K^+$ form. The solution pH influenced significantly the lithium ions adsorption capacity and best results were obtained at pH 5-10.
Keywords
Lithium ion; Zeolite; Adsorption; Cation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Gupta, V. K., Ali, I., 2001, Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste, Wat. Res., 35, 33-40.   DOI   ScienceOn
2 Kam, S. K., Kim, D. S., Lee, M. G., 1999, Comparison of removal performances of divalent heavy metals by natural and pretreated zeolites (in Korean), J. Environ. Sci., 8(3), 399-409.
3 Kam, S. K., Hong, J. Y., Hu, C. G., Lee, M. G., 2003, Adsorption characteristics of Cd(II) and Cu(II) by zeolites synthesized from hwangto (in Korean), J. Environ. Sci., 12, 817-824.   과학기술학회마을   DOI   ScienceOn
4 Kam, S. K., Hyun, S. S., Lee, M. G., 2011, Adsorption of lead ion by zeolites synthesized from Jeju scoria (in Korean), J. Environ. Sci., 20, 1437-1445.   과학기술학회마을   DOI   ScienceOn
5 Kaneko, S., Takahashi, W., 1990, Adsorption of lithium in sea water on alumina-magnesia mixed-oxide gels, Colloid Surf., 47, 69-79.   DOI   ScienceOn
6 Kocaoba, S., Orhan, Y., Akyuz, T., 2007, Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite, Desalination, 214, 1-10.   DOI   ScienceOn
7 Lee, S. W., Kam, S. K., Lee, M. G., 2013, Adsorption characteristics of methylene blue and phenol from aqueous solution using coal-based activated carbon (in Korean), J. Environ. Sci., 22, in press.   과학기술학회마을   DOI   ScienceOn
8 Lee, S. W., Na, Y. S., An, C. D., Lee, M. G., 2011, Adsorption characteristics of water vapor on zeolite (in Korean), J. Environ. Sci., 20, 667-672.
9 Lee, M. G., Kam, S. K., Suh, K. H., 2012, Adsorption of non-degradable eosin Y by activated carbon (in Korean), J. Environ. Sci., 21, 623-631.   과학기술학회마을   DOI   ScienceOn
10 Mustafa, S., Shah, K. H., Naeem, A., Ahmad, T., Waseem, M., 2010, Counter-ion effect on the kinetics of chromium (III) sorption by Amberlyst 15 in $H^{+}$, $Li^{+}$, $Na^{+}$, $Ca^{++}$, $Al^{+++}$ forms, Desalination, 264, 108-114.   DOI   ScienceOn
11 Naghash, A. R., Lee, J. Y., 2000, Preparation of spinel lithium manganese oxide by aqueous co-precipitation, J. Power Sources, 85, 284-293.   DOI   ScienceOn
12 Navarrete-Casas, R., Navarrete-Guijosa, A., Valenzuela- Calahorro, C., Lopez-Gonzalez, J. D., Garcia-Rodriguez, A., 2007, Study of lithium ion exchange by two synthetic zeolites: Kinetics and equilibrium, J. Colloid Interface Sci., 306, 345-353.   DOI   ScienceOn
13 Peric, J., Trgo, M., Medvidovic, N. V., 2004, Removal of zinc, copper and lead by natural zeolite a comparison of adsorption isotherms, Water Research, 38, 1893-1899.   DOI   ScienceOn
14 Sharma, Y. C., Weng, C. H., 2007, Removal of chromium (VI) from water and wastewater by using riverbed sand: Kinetic and equilibrium studies, J. Hazard. Mater, 142, 449-454.   DOI   ScienceOn
15 Bunus, F. T., Domocoş, V. C., Dumitrescu, P., 1978, Synergic extraction of uranium from phosphate solutions with di-(2 ethylhexyl) phosphotic acid and tri-n-octylphosphine oxide, J. Inorganic and Nuclear Chem., 40, 117-121.   DOI   ScienceOn
16 Erdem, E., Karapinar, N., Donat, R., 2004, The removal of heavy metal cations by natural zeolites, J. Colloid Interf. Sci., 280, 309-314.   DOI   ScienceOn
17 Foo, K. Y., Hameed, B. H., 2010, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156, 2-10.   DOI   ScienceOn
18 Boyd, G. E., Schubert, J., Adamson, A. W., 1947, The exchange adsorption of ions from aqueous solutions by organic zeolites. I. Ion-exchange equilibria, J. Am. Chem. Sci., 69, 2818-2829.   DOI
19 Chitrakar, R., Kanoh, H., Miyai, Y., Ooi, K., 2000, Recovery of lithium from seawater using manganese oxide adsorbent ($H_{1.6}Mn_{1.6}O_{4}$) derived from $Li_{1.6}Mn_{1.6}O_{4}$, Ind. Eng. Chem. Res., 40(9), 2054-2058.
20 Daifullah, A. A. M., Yakout, S. M., Elreefy, S. A., 2007, Adsorption of fluoride in aqueous using $KMnO_{4-}$ modified activated carbon derived from steam pyrolysis of rice straw, J. Hazard. Mater., 147, 633-643.   DOI   ScienceOn
21 El-Kamash, A. M., Zaki, A. A., Abed El Geleel, M., 2005, Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A, J. Hazard. Mater., B127, 211-220.
22 Sprynskyy, M., Buszewski, B., Terzyk, A. P., Namiesnik, J., 2006, Study of the selection mechanism of heavy metal ($Pb^{2+}$, $Cu^{2+}$, $Ni^{2+}$, and $Cd^{2+}$) adsorption on clinoptilolite, J. Colloid Interf. Sci., 304, 21-28.   DOI   ScienceOn
23 Ye, C., Yang, H., Lin, J., Zeng, H., Yu, F., 2011, Study on ion exchange property of removing $Mn^{2+}$ and $Fe^{2+}$ in groundwater by modified zeolite, Desalination Water Treat., 30, 114-121.   DOI
24 Tashauoei, H. R., Attar, H. M., Amin, M. M., Kamali, M., Nikaeen, M., Dastjerdi, M. V., 2010, Removal of cadmium and humic acid from aqueous solutions using surface modified nanozeolite A, Int. J. Environ. Sci. Tech., 7, 497-508.   DOI   ScienceOn