Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.6.338

Enhanced Reaction Kinetic of Fe3O4-graphite Nanofiber Composite Electrode for Lithium Ion Batteries  

Wang, Wan Lin (Department of Electrical Engineering, Chonnam National University)
Park, Ju-Young (Department of Electrical Engineering, Chonnam National University)
Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.6, 2014 , pp. 338-343 More about this Journal
Abstract
A $Fe_3O_4$-graphite nanofiber composite for use as an anode material was successfully synthesized by calcining $Fe_3O_4$ and graphite nanofiber (GNF) together in a $N_2$ atmosphere. Using this $Fe_3O_4$-GNF composite in a lithium ion battery resulted in a higher lithium storage capacity than that obtained using $Fe_3O_4$-graphite ($Fe_3O_4$-G). The $Fe_3O_4$-GNF (10 wt%) electrode exhibited a higher lithium ion diffusion coefficient ($2.29{\times}10^{-9}cm^2s^{-1}$) than did the $Fe_3O_4$-G (10%) ($3.17{\times}10^{-10}cm^2s^{-1}$). At a current density of $100mA\;g^{-1}$, the $Fe_3O_4$-GNF (10 wt%) anode showed a higher reversible capacity ($1,031mAh\;g^{-1}$) than did the $Fe_3O_4$-G (10%) anode ($799mAh\;g^{-1}$). Moreover, the $Fe_3O_4GNF$ electrodes showed good cycling performance without the addition of a conductive material.
Keywords
$Fe_3O_4$; Composite; Electrochemical performance; Graphite nanofiber; Lithium ion diffusion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. M. Liu, Z. D. Huang, S. W. Oh, B. Zhang, P. C. Ma, M. M. F. Yuen, and J. K. Kim, Compos. Sci. Technol., 72, 121 (2012). [DOI: http//dx.doi.org/10.1016/j.compscitech.2011.11.019].   DOI
2 X. Y. Zhao, D. G. Xia, and K. Zheng, J. Alloys Comp., 513, 460 (2012). [DOI: http//dx.doi.org/10.1016/j.jallcom.2011.10.081].   DOI
3 S. K. Martha, N. J. Dudney, J. O. Kiggans, and J. Nanda, J. Electrochem. Soc., 159, 1652 (2012). [DOI: http//dx.doi.org/10.1149/2.041210jes].   DOI
4 T. H. Park, J. S. Yeo, M. H. Seo, J. Miyawaki, I. Mochida, and S. H. Yoon, Electrochim. Acta, 93, 236 (2013). [DOI: http//dx.doi.org/10.1016/j.electacta.2012.12.124].   DOI
5 X. G. Zhao, E. M. Jin, and H. B. Gu, Appl. Surf. Sci., 287, 8 (2013). [DOI: http//dx.doi.org/10.1016/j.apsusc.2013.09.017].   DOI
6 V. H. Nguyen, E. M. Jin, and H. B. Gu, J. Power Sources, 244, 586 (2013). [DOI: http//dx.doi.org/10.1016/j.jpowsour.2013.01.073].   DOI
7 P. C. Lian, X. F. Zhu, S. Z. Liang, Z. Li, W. S. Yang, and H. H. Wang, Electrochim. Acta, 55, 3909 (2010). [DOI: http//dx.doi.org/10.1016/j.electacta.2010.02.025].   DOI
8 J. Y. Jang, M. S. Kim, H. M. Jeong, and C. M. Shin, Compos. Sci. Technol., 69, 186 (2009). [DOI: http//dx.doi.org/10.1016/j.compscitech.2008.09.039].   DOI   ScienceOn
9 X. H. Rui, N. Ding, J. Liu, C. Li, and C. H. Chen, Electrochim. Acta, 55, 2384 (2010). [DOI: http//dx.doi.org/10.1016/j.electacta.2009.11.096].   DOI   ScienceOn
10 Z. M. Cui, L. Y. Jiang, W. G. Song, and Y. G. Guo, Chem. Mater., 21, 1162 (2009). [DOI: http//dx.doi.org/10.1021/cm8033609].   DOI
11 P. He, X. Zhang, Y. G. Wang, L. Cheng, and Y. Y. Xia, J. Electrochem. Soc., 155, A144 (2008). [DOI: http//dx.doi.org/10.1149/1.2815609].   DOI
12 X. H. Rui, N. Yesibolati, S. R. Li, C. C. Yuan, and C. H. Chen, Solid State Ionics, 187, 58 (2011). [DOI: http//dx.doi.org/10.1016/j.ssi.2011.02.013].   DOI
13 S. Mitra, P. Poizot, A. Finke, and J. M. Tarascon, Adv. Funct. Mater., 16, 2281 (2006). [DOI: http//dx.doi.org/10.1002/adfm.200500753].   DOI
14 V. H. Nguyen, W. L. Wang, E. M. Jin, and H. B. Gu, J. Alloys Comp., 569, 29 (2013). [DOI: http//dx.doi.org/10.1016/j.jallcom.2013.03.139].   DOI
15 W. L. Wang, E. M. Jin, and H. B. Gu, Surf. Rev. Lett., 20, 1350009 (2013). [DOI: http//dx.doi.org/10.1142/S0218625X13500091].   DOI
16 X. Lu, L. Zhao, X. Q. He, R. J. Xiao, L. Gu, Y. S. Hu, H. Li, Z. X. Wang, X. F. Duan, L. Q. Chen, J. Maier, and Y. Ikuhara, Adv. Mater., 24, 3233 (2012). [DOI: http//dx.doi.org/10.1002/adma.201200450].   DOI
17 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature, 407, 496 (2000). [DOI: http//dx.doi.org/10.1038/35035045].   DOI   ScienceOn
18 S. W. Hwang, A. Umar, S. H. Kim, S. A. Al-Sayari, M. Abaker, A. Al-Hajry, and A. M. Stephan, Electrochim. Acta, 56, 8534 (2011). [DOI: http//dx.doi.org/10.1016/j.electacta.2011.07.033].   DOI
19 L. Taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon, Nat. Mater., 5, 567 (2006). [DOI: http//dx.doi.org/10.1038/nmat1672].   DOI   ScienceOn
20 W. M. Zhang, X. L. Wu, J. S. Hu, Y. G. Guo, and L. J. Wan, Adv. Funct. Mater., 18, 3841 (2008).
21 B. Jin, A. H. Liu, G. Y. Liu, Z. Z. Yang, X. B. Zhong, X. Z. Ma, M. Yang, and H. Y. Wang, Electrochim. Acta, 90, 426 (2013). [DOI: http//dx.doi.org/10.1016/j.electacta.2012.11.114].   DOI
22 M. J. Hu, Y. Z. Jiang, and M. Yan, J. Alloys Comp., 582, 563 (2014). [DOI: http//dx.doi.org/10.1016/j.jallcom.2013.08.098].   DOI
23 Y. X. Ma, Y. F. Li, G. H. Zhao, L. Q. Yang, J. Z. Wang, X. Shan, and X. Yan, Carbon, 50, 2976 (2012). [DOI: http//dx.doi.org/10.1016/j.carbon.2012.02.080].   DOI
24 G. Gao, P. Y. Qiu, Q. R. Qian, N. Zhou, K. Wang, H. Song, H. L. Fu, and D. X. Cui, J. Alloys Comp., 574, 340 (2013). [DOI: http//dx.doi.org/10.1016/j.jallcom.2013.05.050].   DOI
25 B. Zhao, R. Z. Liu, X. H. Cai, Z. Jiao, M. H. Wu, X. T. Jing, B. Lu, and Y. Jiang, J. Appl. Electrochem., 44, 53 (2014). [DOI: http//dx.doi.org/10.1007/s10800-013-0599-1].   DOI
26 B. Y. Jung, H. S. Lim, Y. K. Sun, and K. D. Suh, J. Power Sources, 244, 177 (2013). [DOI: http//dx.doi.org/10.1016/j.jpowsour.2013.02.035].   DOI
27 D. W. Su, H. J. Ahn, and G. X. Wang, J. Power Sources, 244, 742 (2013). [DOI: http//dx.doi.org/10.1016/j.jpowsour.2012.11.058].   DOI
28 S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, Y. Yui, and K. Konno, J. Phys. Chem. C, 115, 13487 (2011). [DOI: http//dx.doi.org/10.1021/jp201691g].   DOI   ScienceOn
29 W. L. Wang, V. H. Nguyen, E. M. Jin, and H. B. Gu, Mater. Express, 3, 273 (2013). [DOI: http//dx.doi.org/10.1166/mex.2013.1124].   DOI
30 B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, Electrochem. Commun., 10, 1537 (2008). [DOI: http//dx.doi.org/10.1016/j.elecom.2008.08.001].   DOI
31 V. H. Nguyen, W. L. Wang, E. M. Jin, and H. B. Gu, Appl. Surf. Sci., 282, 444 (2013). [DOI: http//dx.doi.org/10.1016/j.apsusc.2013.05.149].   DOI
32 W. L. Wang, V. H. Nguyen, and H. B. Gu, Appl. Surf. Sci., 288, 742 (2014). [DOI: http//dx.doi.org/10.1016/j.apsusc.2013.09.129].   DOI
33 K. T. Lee, Y. S. Jung, and S. M. Oh, J. Am. Chem. Soc., 125, 5652 (2003). [DOI: http//dx.doi.org/10.1021/ja0345524].   DOI   ScienceOn
34 L. Jabbour, M. Destro, D. Chaussy, C. Gerbaldi, S. Bodoardo, N. Penazzi, and D. Beneventi, Compos. Sci. Technol., 87, 232 (2013). [DOI: http//dx.doi.org/10.1016/j.compscitech.2013.07.029].   DOI
35 L. M. Suo, Y. S. Hu, H. Li, M. Armand, and L. Q. Chen, Nat. Commun., 4, 1481 (2013). [DOI: http//dx.doi.org/10.1038/ncomms2513].   DOI
36 A. P. Hu, X. H. Chen, Y. H. Tang, Q. L. Tang, L. Yang, and S. P. Zhang, Electrochem. Commun., 28, 139 (2013). [DOI: http//dx.doi.org/10.1016/j.elecom.2012.12.024].   DOI