Browse > Article
http://dx.doi.org/10.14478/ace.2020.1033

Ionic Liquid Crystal Electrolytes based on Ether Functionalized Ionic Liquid for Lithium Batteries  

Kim, Il Jin (New Functional Components Research Team, Korea Institute of Footwear and Leather Technology (KIFLT))
Kim, Ki Su (Department of Organic Material Science and Engineering, Pusan National University)
Lee, Jin Hong (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.3, 2020 , pp. 305-309 More about this Journal
Abstract
In this study, a series of ionic liquids based electrolytes for lithium batteries were prepared by mixing the anion functionalized ionic liquid, [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite), with the lithium salt, LiTf2N (lithium bis(trifluoromethanesulfonyl)imide), and the concentration of lithium salt was varied between 0 and 3.0 molar ratio. We observed the ionic mixtures became opaque and spontaneously aggregated to form a thermotropic ionic liquid crystal. Extensive spectroscopic examinations of the ionic liquid crystals were carried out to investigate their self-organized structures and the ion transport behavior depending on the concentration of lithium salt. An increase in the ionic conductivity was observed for the ionic liquid crystals related to the ability to form ion diffusion pathways along the ordered structures, resulting in improved electrochemical performances of lithium batteries.
Keywords
Ionic liquids; Electrolyte; Ionic liquid crystal; Lithium batteries; Ion diffusion behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Sun, N. Liu, and Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 16071 (2016).   DOI
2 Q. Zhang, K. Liu, F. Ding, and X. Liu, Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 10, 4139-4174 (2017).   DOI
3 J. W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554-4569 (2010).   DOI
4 E. Quartarone and P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives, Chem. Soc. Rev., 40, 2525-2540 (2011).   DOI
5 F. Zheng, M. Kotobuki, S. Song, M. O. Lai, and L. Lu, Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources, 389, 198-213 (2018).   DOI
6 K. Goossens, K. Lava, C. W. Bielawski, and K. Binnemans, Ionic liquid crystals: Versatile materials, Chem. Rev., 116, 4643-4807 (2016).   DOI
7 K. Binnemans, Ionic liquid crystals, Chem. Rev., 105, 4148-4204 (2005).   DOI
8 T. Kato, M. Yoshio, T. Ichikawa, B. Soberats, H. Ohno, and M. Funahashi, Transport of ions and electrons in nanostructured liquid crystals, Nat. Rev. Mater., 2, 17001 (2017).   DOI
9 P.-L. Champagne, D. Ester, A. Bhattacharya, K. Hofstetter, C. Zellman, S. Bag, H. Yu, S. Trudel, V. K. Michaelis, V. E. Williams, V. Thangadurai, and C.-C. Ling, Liquid crystalline lithium-ion electrolytes derived from biodegradable cyclodextrin, J. Mater. Chem. A, 7, 12201-12213 (2019).   DOI
10 T. Onuma, E. Hosono, M. Takenouchi, J. Sakuda, S. Kajiyama, M. Yoshio, and T. Kato, Noncovalent approach to liquid-crystalline ion conductors: High-rate performances and room-temperature operation for Li-ion batteries, ACS Omega, 3, 159-166 (2018).   DOI
11 S. Wang, X. Liu, A. Wang, Z. Wang, J. Chen, Q. Zeng, X. Wang, and L. Zhang, An ionic liquid crystal-based solid polymer electrolyte with desirable ion-conducting channels for superior performance ambient-temperature lithium batteries, Polym. Chem., 9, 4674-4682 (2018).   DOI
12 A. Eisele, K. Kyriakos, K. R. Bhandary, M. Schonhoff, C. M. Papadakis, and C. M. B. Rieger, Structure and ionic conductivity of liquid crystals having propylene carbonate units, J. Mater. Chem. A, 3, 2942-2953 (2015).   DOI
13 J. H. Lee, K. S. Han, J. S. Lee, A. S. Lee, S. K. Park, S. Y. Hong, J.-C. Lee, K. T. Mueller, S. M. Hong, and C. M. Koo, Facilitated ion transport in smectic ordered ionic liquid crystals, Adv. Mater., 28, 9301-9307 (2016).   DOI
14 G. A. Giffin, Ionic liquid-based electrolytes for "beyond lithium" battery technologies, J. Mater. Chem. A, 4, 13378-13389 (2016).   DOI
15 T. Ichikawa, T. Kato, and H. Ohno, Dimension control of ionic liquids, Chem. Commun., 55, 8205-8214 (2019).   DOI
16 Q. Zhang, Y. Zhang, Y. Meng, Y. Wang, J. Ou, Y. Guo, and D. Xiao, Phytic acid derived LiFePO4 beyond theoretical capacity as high-energy density cathode for lithium ion battery, Nano Energy, 34, 408-420 (2020).   DOI
17 S. K. Park, K. S. Han, J. H. Lee, V. Murugesan, S. H. Lee, C. M. Koo, J. S. Lee, and K. T. Mueller, Evolution of ion-ion interactions and structures in smectic ionic liquid crystals, J. Phys. Chem. C, 123, 20547-20557 (2019).   DOI
18 M. J. Monteiro, F. F. C. Bazito, L. J. A. Siqueira, M. C. C. Ribeiro, and R. M. Torresi, Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid, J. Phys. Chem. B, 112, 2102-2109 (2008).   DOI
19 A. S. Lee, J. H. Lee, S. M. Hong, J.-C. Lee, S. S. Hwang, and C. M. Koo, Ion conduction behaviour in chemically crosslinked hybrid ionogels: Effect of free-dangling oligoethyleneoxides. RSC Adv., 5, 94241-94247 (2015).   DOI