• 제목/요약/키워드: Linear Discrete-Time System

검색결과 298건 처리시간 0.026초

이산 시간 스위칭 다이나믹을 이용한 새로운 슬라이딩 모드 제어 시스템의 설계 및 안정도 해석 (Design of new sliding mode control system using discrete-time switching dynamics and its stability analysis)

  • 김동식;서호준;서삼준;박귀태
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.407-414
    • /
    • 1996
  • In this paper we consider the variable structure control for a class of discrete-time uncertain multivariable systems where the nominal system is linear. Discrete-time switching dynamics are introduced so that a new type of state trajectories called sliding mode may exist on the sliding surface by state feedback. The quantitative analysis for the matched uncertainties will show that every response of the system with the proposed switching dynamics is bounded within small neighborhoods of the state-space origin. Also, by the similarity transformation it will be shown that the eigenvalues of the closed-loop systems are composed of those of the subsystems which govern the range-space dynamics and null-space dynamics. It will be also shown that ideal sliding mode can be obtained in the absence of uncertainties due to one-step attraction to the sliding surface regardless of initial position of states. (author). 12 refs., 2 figs.

  • PDF

파라미터 불확실성을 가지는 연속/이산 특이시스템의 견실 $Η_2$ 제어 (Robust $H_$ Control of Continuous and Discrete Time Descriptor Systems with Parameter Uncertainties)

  • 이종하;김종해;박홍배
    • 전자공학회논문지SC
    • /
    • 제40권4호
    • /
    • pp.251-263
    • /
    • 2003
  • 본 논문에서는 연속시간과 이산시간에서 파라미터 불확실성을 가지는 선형 시불변 특이시스템에 대한 Η₂제어기 존재조건과 설계방법을 행렬부등식으로 제안한다. 먼저, 연속시간의 경우에는 Η₂제어기가 존재하기 위한 필요충분조건과 설계방법을 선형행렬부등식(linear matrix inequality)으로 제시하고, 이산시간의 경우에는 Η₂제어기가 존재하기 위한 충분조건과 설계방법을 행렬부등식으로 제시한다. 마지막으로 연속시간과 이산시간 각각의 경우에서, 파라미터 불확실성을 고려하여 제시한 조건들을 견실 Η₂제어문제로 확장하고, 간단한 예제를 통해 제시한 조건의 타당성을 검토해 본다.

A regularity condition for asymptotic tracking in discrete-time nonlinear systems

  • Song, Yongkyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.138-143
    • /
    • 1993
  • A well-defined relative degree, which is one of the basic assumptions in adaptive control or nonlinear synthesis problems, is addressed. It is shown that this is essentially a necessary condition for asymptotic tracking in discrete-time nonlinear systems. To show this, tracking problems are defined, and a local linear input-output behavior of a discrete-time system is introduced in relation to a well-defined relative degree. It is then shown that if a plant is invertible and accessible from the origin and a compensator solves the local asymptotic tracking problem, then the plant necessarily has a well-defined relative degree at the origin.

  • PDF

펄스-폭 변조방식의 직렬공진 컨버터의 소신호 모델링 (Small Signal Modeling for the PWM Series Resonant Converter (PWM-SRC))

  • 최현칠
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1441-1447
    • /
    • 1999
  • A discrete time domain modeling is presented for the pulse-width modulated series resonant converter (PWM-SRC) with a discontinuous current mode. This nonlinear system is linearized about its equilibrium state to obtain a linear discrete time model for the investigation of small signal performances such as the stability and transient response. The usefulness of this small signal model is verified through the dynamic simulation.

  • PDF

외란을 갖는 선형 시변 샘플링된 시스템에 대한 가변구조제어기 (Variable Structure Controller for Linear Time-Varying Sampled-Data Systems with Disturbances)

  • 박강박
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권12호
    • /
    • pp.556-561
    • /
    • 2002
  • In this paper, a discrete-time variable structure controller for linear time-varying sampled-data systems with disturbances is proposed. The proposed method guarantees that the system state if globally uniformly ultimately bounded (G.U.U.B), and the ultimate bound is shown to be the order of T, O(T), where T is a sampling period.

Robust tuning of quadratic criterion-based iterative learning control for linear batch system

  • Kim, Won-Cheol;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.303-306
    • /
    • 1996
  • We propose a robust tuning method of the quadratic criterion based iterative learning control(Q-ILC) algorithm for discrete-time linear batch system. First, we establish the frequency domain representation for batch systems. Next, a robust convergence condition is derived in the frequency domain. Based on this condition, we propose to optimize the weighting matrices such that the upper bound of the robustness measure is minimized. Through numerical simulation, it is shown that the designed learning filter restores robustness under significant model uncertainty.

  • PDF

A pole assignment method in a specified disk

  • Nguyen, van-Giap;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.601-604
    • /
    • 1997
  • In this paper, a pole assignment problem in the unit disk for a linear discrete system is discussed. The analysis is based on the Luenberger's canonical form and Gershgorin's disk. The proposed method for pole assignment is convenient for a linear time invariant discrete system.

  • PDF

선형시변 시스템의 안정도 영역에 관하여 (On a Stability Region of Liner Time-Varying Systems)

  • 최종호;장태정
    • 대한전기학회논문지
    • /
    • 제37권7호
    • /
    • pp.484-489
    • /
    • 1988
  • Sufficient conditions concerning the perturbation region of system parameters, which guarantee the asymptotic stability of linear time- varying systems, are presented. These conditions are obtained by Lyapunov function approach for continuous-time and discrete-time systems. Also, a computational algorithm using nonlinear programming is proposed for finding the maximum perturbation region which satisfies the sufficient condition for the continuous-time systems. The technique of finding the solution for the continuous-time systems can also be applied to the discrete-time systems. In the continuous-time case, it is shown by an example that the method proposed in this paper yields much larger perturbation region of parameters than other previously reported results. An example of the perturbation region of system paramters for the discrete-time system is also given.

  • PDF

불확실성이 포함된 비선형 시스템에 대한 전역적 접근의 지능형 디지털 재설계 (Intelligent Digital Redesign of Uncertain Nonlinear Systems : Global approach)

  • 성화창;주영훈;박진배;김도완
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.95-98
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete -time system have proper reason. Sufficiently conditions for the global state -matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMls). Finally, we prove the effectiveness and stabilization of the proposed intelligent digital redesign method by applying the chaotic Lorentz system.

  • PDF

Observer-Based Robust Control Giving Consideration to Transient Behavior for Linear Uncertain Discrete-Time Systems

  • Oya, Hidetoshi;Hagino, Kojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.903-908
    • /
    • 2003
  • In this paper, we present an observer-based robust controller which achieves not only robust stability but also an performance robustness for linear uncertain discrete-time systems. The performance robustness means that comparing the transient behavior of the uncertain system with a desired one generated by the nominal system, the deterioration of control performance (i.e. the error between the real response and the desired one) is suppressed without excessive control input. The control law consists of a state feedback law for the nominal system and a compensation input given by a feedback form of an estimated error signal. In this paper, we show that conditions for the existence of the observer-based controller are given in terms of linear matrix inequalities (LMIs). Finally, a numerical example is given to illustrate the proposed technique.

  • PDF