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Abstract We propose a robust tuning method of the quadratic criterion based iterative learning control(Q-ILC) algo-
rithm for discrete-time linear batch system. First, we establish the frequency domain representation for batch svstems.
Next, a robust convergence condition is derived in the frequency domain. Based on this condition, we propose to op-
timize the weighting matrices such that the upper bound of the robustness measure is minimized. Through numerical
simulation, it is shown that the designed learning filter restores robustness under significant model uncertainty.
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1. Introduction

Since first formalized by Arimoto et al.(1984), iterative
learning control(ILC) has been settled as a new control
paradigm for repetitive systems such as robot manipula-
tors or rotating machines. Recently, application of ILC
starts to extend to chemical batch processes, too. Al-
though ILC has many attractive mathematical features
such as asymptotically zero-error tracking and perfect re-
jection of repetitive disturbances under imprecise knowl-
edge of process model, the existing ILC algorithms still
have some shortcomings which prevent them from being
widely applied in practice. They are highly sensitive to
high frequency output disturbances and not suitable to
nonsquare MIMO systems, and can not handle constraints
on input and output variables. As a way to overcome
the above shortcomings, Lee et al.(1996) have proposed
the so-called quadratic criterion based iterative learning
control(Q-ILC) algorithm. It is a model-based algorithm
and finds input update by minimizing a one-step ahead
quadratic cost which includes input change as well as
tracking error penalty terms. The weightintg matrices for
the penalty terms are used to tune Q-ILC.

The objective of this paper is placed on developing for-
mal procedures to tune the weighting matrices in the fre-
quency domain. For this purpose, we first establish the
frequency domain representation of a linear time-varying
batch system. Based on this relationship, we propose a
robust convergence condition and a design procedure for
the weighting matrices which minimizes the upper bound
for the robustness measure.

In section 2 and 3, we briefly review the Q-ILC algorithm
and discuss the properties relevant to our study. In section
4, the robust condition is derived and the tuning method
based on this condition is presented. Numerical illustra-
tion is given in section 5 and finally, conclusion is drawn.

2. Q-ILC Algorithm
2.1 Process Model and ILC Problem

Consider an discrete-time time-varying linear batch pro-
cess defined over T = {1, 2,...,N}. Since the input
and output sequences over T form finite dimensional vec-
tors, we can describe the input-output relationship by the
following linear static model composed of finite pulse re-
sponse coefficients.

yvi = Gug +dy (1)
where
y=[") 7@ .. .7 (V)] (2)
d and u are defined similarly, and
g1,1 0 N 0
g21 E22 ... 0
G= _ . : : (3)
BNl BN,2 gN.N
gt L gtm
g=| i (4)
gnyl gnynu

In the above, the subscript 4 denotes the k" batch: v, y,
and d represent the input, output, and output disturbance,
respectively; gi{, denotes the pulse response coefficient of
the i* output at time t for the j** input at time r. For
time-variant systems, g: r is equal to g:—.. We call the
above representation a static gain model.

Under the condition that the disturbance vector dy. is same
at every batch, the output transition from the k** to the
(k + 1)** batches can be written as follows:

Ye+1 =¥k + G (Upy — ug) ()
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If we denote yq4 as the desired reference output trajectory
vector and define

e =
Auk+1 =

. (6)
W41 — Uk

(5) can be rearranged in terms of the tracking error and
input change as follows:

€r4]1 = € — GAUk+1 (7)
Under the above model description, in order to accomo-
date nonsquare batch processes as well, the following min-
imizing objective is considered as the ILC objective in this
study.

(8)

|lex|| = min|je]| as k — oo
u
Here, || - || represents an appropriately defined norm.
2.2 Q-ILC Algorithm

As a way to reduce noise sensitivity in parallel with
achieving the objective (8), we consider the following
quadratic subproblem which contains a penelty term on
input change.

min {Jk = -1— [eZ+1Qek+1 + Auf+1RAuk+1 III:]}

ADug .y, 2

(9
where Q and R are symmetric positive definite matrices
and 7, denotes all the information available after the k"
batch run. The cost function has a penalty term on the
input change between two adjacent batches in order to sup-
press excessive input movements caused by high frequency
output disturbances and large errors during the initial few
runs. This penalty term will, however, vanish as the input
trajectory converges, and therefore not cause output offset
in the limit as in the algorithms by Tao et al.(1994) or

Sogo and Adachi(1994).

We can readily obtain the least squares solution by substi-
tuting (7) into the cost function (9). The result is

1 = ug + HY%;, (10)

where
H? = (G"QG +R) 7' G"Q (11)

In (10), ug41 = ux when e, = 0. This indicates there will
be no output offset if the proposed ILC algorithm con-
verges.

3. Properties of Q-ILC
3.1 Noise Sensitivity

In fact, learning is a procedure to find the inverse process
map in an iterative way using input/output data. Be-
cause of this trait, the learning filters have differentiating
property (in the sense of continuous time) and is prone
to amplify high frequency components in the output. If
we measure the magnitude of signals using the Euclidean

norm, noise sensitivity can be quantified by the sup norm
of the learning filter. The sup norm of Q-ILC can be shown
to satisfy the following inequality

IH? oo

1(GTQG +R) ™ GTQllw

Umaz(G)amaz(Q)

< omin (R) (12)

where 0mg, and omin denote maximum and minimum sin-
gular values of a matrix, respectively.

The above relationship implies the noise sensitivity is
bounded from above irrespective of the sampling period
and can be adjusted by the selection of the weighting ma-
trices. This is a definite advantage over the other existing
algorithms based on pure differentiators or model inver-
sion, which gives infinite gain at infinite frequency.

3.2 Convergence

If we premultiply G on (10) and substitute (7) into the re-
sulting equation, we obtain the evolution equation of the
output error

ert1 = (I- GH?) e (13)

and the output error converges to zero if the following con-
dition is satisfied.

A (I-GH?)| <1 Vi (19)

where A; denotes the eigenvalue.

It has been shown[2] the above condition is always satisfied
for G with full row rank. When G does not have full row
rank, the system has uncontrollable modes, which implies
it is impossible to enforce e} Qe;, to zero in general. Only
the outputs in the reachable subspace can be enforced to
zero while the outputs in the unreachable subspace remain
intact. Mathematically, the convergcne property of Q-ILC
can be it can be written as

efUTQU.er —» 0as k = oo

(15)

where U, is a projection matrix onto the image space of G.
In this way, the objective (8) can be proved to be fulfilled
regardless of singularity of G.

When there is model error, (13) is written as

€r4+1 = (I - GtrueHQ) €k (16)

where G, denotes the true process, and the convergence
is determined by I — G, H?. Obviously, the robust con-
vergence depends on the choices of the weighting matrices.

4. Robust Tuning of Q-ILC

In this section, we present the robust tuning method for
the weighting matrices. Since model uncertainty is very of-
ten understood in the frequency domain, we first establish
the frequency domain transformation of the batch process
model
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4.1 Discrete Fourier Transformation

For any finite sequence {u(t),t = 1,1,---, N}, the discrete
Fourier transform is defined as follows:

N-1
ﬁ(wk) — Z u(n)e-‘juknTs (17)
n=0
where
2
wk-(N—Ts)k, k=0,1,--,N—1  (18)

Here, T; is the sampling period. The above relationship
can be expressed by a vector form as follows:

ua=F,, u (19)
where

0= [a" (wo) @ (w1) & (wn-1)]

L. I, I,
I.. e i1, B emIwN-1Y

F..=| . : : : (20)
L; e—ij.—xln . e"jWN—liN"l)In

where I, denotes an n x n identity matrix. Accordingly,
the inverse transform is

-1 ~

1
u=F, q, = —

= Nz

where the superscript H denotes the conjugate transpose.

F;! FZ, (21)

From (19), it is obvious that any linear relationship be-
tween N sequence vectors

v = Au (22)

can be transformed to

y=Aa, A=F, AF;! (23)
By the same reasoning, a serial connection of two time-
domain static gain models can be transformed to

y =BAu — y=BAa (24)
Using the above rules, we can directly transform the time
domain equations of Q-ILC into the frequency domain by
preserving the functional relationships.

As mentioned in sectuion 2, the system matrix in (22) may
represent time-varying as well as time-invariant dynamics.
Considering that transfer functions are defined only for
time-ina- ariant cases in continuous processes, the above
frequency domain transformation is somewhat surprising.

4.2 Frequency Dependent Tuning of Q-ILC

One of the applications of the above transformation is fre-
quency dependent tuning of of the weighting matrices. Us-
ing (19), the Q-ILC objective (9) can be rewritten as

1

Je =58

{éZHQékH + Aﬁ{+lﬁAﬁk+l} (25)

Once transformed as above, Q and R can be assumed to
be block diagonal matrices without loss of generality. The
k** diagonal element (matrix) is associated with the fre-
quency component at wx—j. Therefore, we can penalize
signals at each frequency by assigning values to the di-
agonal elements. After Q and R are designed, they are
transformed to the time domain according to

Q=F; QF.,/N>, R=F] RF, /N* (26)

4.3 Robust Tuning

We assume the model uncertainty is given in the unstruc-
tured output multiplicaitve form in the frequency domain.
Other types of uncertainties are, however, dealt with sim-
ilarly. If we let Aw(wy) with ||Alj.e < 1 be the model
uncertainty at wg, the transformed form of the real pro-
cess can be represented by

Great = (I+ AW)G (27)
where
w(wo) 0 ‘e 0
- 0 w(wl)
W= : : . : (28)
6 0 w(wz-v—1)

with ||A]jec < 1. Each element shown in (28) is an n, x n,
matrix.

From (16) and the realtionship in (24), the robust conver-
gence condition can be written as
Il = GreatHY|oo < 1 (29)

where ||A|lcc = 0maz(A). Using the triangular inequality,
we obtain the following relationship.

- GreatA%0e < [T GHjoo + [AWGH? |
< - GHY|w + [WEHY|w
(30)
where ) o . .
H° =(G"QG +R)"'G"Q (31)

From the above inequality, the robust tuning problem be-
comes the following minization problem.

min ([T~ GH |l + [IWEH |l ] =
. - 5 5@
min [Umaz(l —GH™) + 0m:(WGH )] (32)

The minimization can be done both for Q and R. In prac-
tice, however, only the relative magnitude between Q and
R is important. Therefore, we may set Q at a constant
matrix (for scaling purpose, for example) and solve the
minimization with respect to only R, or solve the mini-
mization with respect to both Q and R with constraints
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imposed on the matrices. Once optimum Q and R are
found, they are converted to the time domain forms ac-
cording to (26).

When G does not have full row rank, G also loses row rank

and oma (I - GﬁQ) can be shown to remain at 1. In this
case, the solution becomes trivial, and more importantly,
the above minimization loses its meaning. To avoid this
problematic case, we need to introduce a projection matrix
U, as discussed in subsection 3.2 and formulate the above
probelm by replacing G with U.G.

5. Numerical Example

For numerical demonstration of the proposed robust tun-
ing method, we consider a discrete-time batch process
which is obtained by discretizing the following SISO con-
tinuous time model with the sampling period of 2 over
[0,40].
1
G(s)= —5—— 33
)= Frrss 1 (33)
We assume that the frequency dependent uncertainty
weighting at wy, is
55 +1

0.5s+1 (34)

w(wg) = lO.2

Wi

In terms of maginitude, model error ranges from 20% at
zero frequency to about 400% at high frquencies. In this
example, we fix Q = I and optimize only R. R* denote
the solution of the optimization problem in eq. (32). For
comparion of the design results, we consider the cases with
R = 21, 0.02I, and 0.0051. For each case including the op-
timum design,

Li=0,1-GH?) +¢;(WGH?), i=1,2,.--,N (35)

are plotted from the maximum to minimum in Fig. 1.
We can observe the cases with R = 0.0051, 0.02I, and 21
violate convergence condition. But the proposed robust
tuning restores the convergnce. Figure 2 shows the simu-
lation results of the robustly tuned Q-ILC for a given y4.
We can see the output converges to the desired trajectory
as number of batches incereases.
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Fig. 1. The plots of L(R) and L(R").
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Fig. 2. Output trajectory of the Q-ILC tuned
by the proposed method

5. Conclusions

We have studied tuning methods for quadratic criterion-
based iterative learning control(Q-ILC) in the frequency
domain. For this purpose, we first establish the frequency
domain transformation using discrete Fourier transform on
finite pulse sequences. Based on this transfomation, we
propose a frequency dependent tuning method and then
a robust tuning method of Q-ILC. The proposed robust
tuning method has been evaluated through numerical sim-
ulation for a SISO linear system.
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