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Abstract In this paper, a pole assignment problem in the unit disk for a linear discrete system is discussed. The

analysis is based on the Luenberger's canonical form and Gershgorin’'s disk. The proposed method for pole

assignment is convenient for a linear time invariant discrete system.
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1. INTRODUCTION

To get satisfactory performance in terms of speed,
damping ratio and overshoot, etc. for linear time
invariant systems, the poles locations for the closed
loop system are constrained in a specified region.
Usually, the problem can be solved by specifying a
particular region of the left half complex plane for the
continuous systems or in the unit circle for the discrete
systems and by obtaining appropriate feedback control
law which assign the closed loop system’s poles in the
specified regign.

In this paper, the problem of pole assignment in a
specified disk for linear discrete systems is addressed.
Much research concerning this problem has been done
and many methods are proposed in the last two, three
decades. Bogachev and Grigorev [1] transformed the
Lyapunov equation into other equation using
fractional function and obtained the control law by
solving the transformed equation. However, the control
law is only determined by using the iteration of
complicated process. Furuta and Kim {2] proposed a
method for pole assignment in a specified disk by
using the well known discrete Riccati equation. In their
proposed algorithm, the feedback law s
determined by using the solution of a discrete Riceati
equation which can be computed directly using the
design specification parameters. Kim and Furuta [3]
proposed a different pole assignment method adopting
the linear fractional transformation. The design
approach is firstly to transform the original system by
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Luenberger’s canonical form, Gershgorin’s disk

linear fractional mapping, then secondly, pole
assignment is performed for the transformed system by
solving the Riccati equation, ie. the state feedback law
for the transformed system is obtained by assigning all
the poles of the closed-loop system to the complex left
half plane for continuous systems or to the
circle, for systems. Thirdly, the inverse
mapping of the control law, ie. the control law of the
original system is derived. Among numerous works in
analysis of pole assignment problem, some of them
have derived extended Lyapunov equations that provide
necessary and sufficient conditions for a given matrix
to have all those eigenvalues in a specified disk [4]-]6].
In these works, the control law is derived via
complicate programing. All the above methods use the
Lyapunov or the Riccati equations but there is no
method incorporating the matrix characteristics with
the property of disk.

In this paper, a pole assignment method in a
specified disk for linear discrete systems is introduced
using the Luenberger’'s canonical form and Gershgorin's
theorem. Firstly, in order to make clear the relationship
between the feedback law and the original system the
system is rearranged into a canonical system based on
Luenberger’'s method. Secondly, using Gershgorin's
theorem, we assign appropriate poles for the canonical
system, then we obtain the feedback control law with
closed-loop poles of the original system in a specified
disk based on the relation between the original and the
transformed systems.
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2. PRELIMINERIES

In this section, some basic properties and theorems
related with the pole assignment method in a specified
disk for linear discrete systems are shown by using
and modifying the well known results.

Let us consider the linear discrete system
20(A,B):

Xp1 = Ax, + Bu, (2.1a)

Yer1 = Cxy (2.1b)

where x is an n-dimensional state vector, % is an

m-dimensional input vector, y is a p-dimensional
output vector and A, B, C are constant matrices of
appropriate dimensions. It is also assumed that the pair

(A, B) is controllable.
2.1 Problem statement

The problem to be addressed is to determine the

state feedback
u, = Fx, (2.2)

such that all the poles of the closed loop system (2.1)
are located in the unit disk.

2.2 Basic theory

In this section, we introduce the basic theory and
concepts which are the basis to the proposed method.

[Lemma 2.1] [7] (Luenberger’s canonical form)
If an m input, p output, and » dimensional linear
multivariable system (A, B) is controllable, then there

exists a nonsingular matrix 7T satisfying

A=T'AT ; B=T'B (2.3)

where, -
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with
o = 28,6 = Lom i = 1m), 0, = 0
and &, are called the controllability indexes. [ |

Let B - [ bl, bz, b3,"', bm],
controllability matrix
{ by, by, by, Aby,, Ab,,, A%b, -}

»n linearly independent column vectors are picked up s

then from the

equentially and the set of these vectors be S.

S = [b,b;,, by, Aby, ] (2.4)
and &, is given by

8; = max{j| A" 'beS} (2.5)

6 = max{d;, 0, ", Om (2.6)

The following theorem related to the disk property of
matrix will be adopted to assign the poles of the
transformed system.

[Theorem 2.1} [8] (Gershgorin’s theorem)

Let A be an eigenvalue of an arbitrary matrix
A=1(ay) € R"™". Then for some integer
7 (1<7<n) we have
Ia,-,— /” =< |dj1| + |d,21 + -+ |a,“j711+

+ laj il + -+ lagl 2.7

For each (7= 1,,n) the inequality (27)

determines a closed circular disk in the complex A
plane whose center is at aj; and radius is given by
the expression on the right-hand side of (27). W
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Theorem 2.1 states that each of the eigenvalues of
A lies in one of these » disks.

[Lemma 2.2] [7] For a linear multivariable system
(A, B, C) a state feedback F can be found such
that the characteristic equation of the feedback system
has arbitrary real coefficient if and only if (A, B) is
controllable. u

3. MAIN RESULT

The main concept to be considered is as follows.
The original system is transformed into Luenberger’'s
second controllable canonical form and the feedback
control law of the transformed system is chosen by
adopting the matrix property based on the Gershgorin's
theorem.

By using Gershgorin’s theorem we can establish the
closed-loop matrix A, of the original system (2.1)
such that all its poles are located in the unit disk. The
feedback law F is obtained from equation

F = B'(A,—-A) (3.1)

Unfortunately, the matrix B not always has inverse,
so we transform the original system into Luenberger’s
second controllable form, in which the
feedback law can be determined without solving the
inverse problem. We have

canonical

A+ BF = T'"(A+ BF)T
= TYAT+ T 'BFT (3.2)
and A=T'YAT;, B=T'B; F=FT
On the other hand, from [7] yields
) E, 1
al + f{
o E,
A+ BF = ) (3.3)
| el A

where,
z:[E’IT!alrEQZTv 02,""55, am]T
E; = [0,,0,I45-1,0,,0]} 6;—1

i: 8;+1
p-

T
a; = [a’zo, Q,

(3.4)

s at(n~41)]y (G =1,-.,m

B = [0, 4,0, b,-,0, 6,17 (35)
b7 = 10,01, Busrny. s Bind, (£ = 1, m)
and the state feedback is
F =B ;,‘f‘m (3.6)
of Vit
Em = ’ Tm = . ’
pT f'T
where,
ff = —al+[0,-+,0,1,0,,0] (3.7)
; N
fﬁ = - 02‘*‘[— Y0, T 71577, ‘?’n—l]
(i =1, m—1 (3.8)

In this canonical form, the feedback law F is
determined by (3.7) and (3.8) without presence of B,
but satifies

det [SI—(A+BF)]=s5"+7,.,s" '+ ... + 7

If A,B and F are determined by (3.4)-(3.6)
respectively, so ( A+ B F) has the form
01 ...0
A+ BF = (3.9)
0 1
- 70 PR Ynﬁl

Let us discuss the closed loop matrix (3.9). From the
theorem 2.1, it is known that the -eigenvalues

AL, Ag, =, A,y of the matrix ( A+ B F) are located
in the unit circle. The position of the last eigenvalue
A, depends on the valuesy, If ; (i = 0,-, n—1)

can be chosen satisfying

5l <1

the eigenvalue A, is located in the unit circle too.

(3.10)

Therefore we can assign all the poles of the closed

loop system ( Z, E) in the unit circle. From now we
can get the pole assignment procedure. This procedure
has the following steps
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Step 1 Transform the
Luenberger’s
(A, B).

Step 2 Assign all the poles of the closed loop

system (A, B) to the

second controllable canonical form

canonical system( ‘A, B) in the unit circle.
Step 3 Determine the feedback F for the given
system ( A, B).

4. NUMERICAL EXAMPLES
If the input matrix B in the systems (2.1) is square

and invertible so the pole assignment problem can be
realized directly by using theorem 2.1. Consider the

system
1 0 -3 1 1 0
[3 . o},B:[ Lo _3]
2 —3 —1 1

2
We want to place the poles in the unit circle. The
closed loop matrix can be chosen, for example

0 1 0
Ay = 0 0 0.5 }
0.5 03 0
so from (3.1) yields
0.3750 —0.4750 —0.2500
F=|—1.3750 1.4750 3.2500 ]
1.1250 0.1750  —0.2500

and eig(A+ BF)=[—0.3545 + 0.47647, 0.7090 ]

Now we consider the linear discrete system

2.5 1 0 0.5 0.5
A=l0 2.5 I,B:[O.S—O.S]
-1 -1 15 0.5 0.5
The Luenberger's second controliable canonical
system
_ 0 1 07 _ 00
A = -7.25 5 O],BI[IO]
2 0 1.5 01

If choosing [ 7y, 71, 72] = [0.4,0.4,0.2], we have

F = [—4.1250 —6 0.1250]
—1.4000 1.2000 0.5000

and eig( A+ BF)=[—0.4+0.48997,1 ].
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If choosing [ 75, 71, 721 =[0.1,0.1,0.8], F becomes

F = [—4.1250 —6 0.1250
—3.0750 2.4000 0.8750 1

and

eig( A+ BF)=1[0.3428, —0.3850, —0.7578].
5. CONCLUSION

In this paper a method to assign all the poles of the
closed loop system in the unit circle for linear discrete
systems is presented. The base of the proposed method
is the Luenberger’'s canonical form and the
Gershgorin’s theorem. The method is simple when a
system has the same number of states and inputs.
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