• Title/Summary/Keyword: LET-R

Search Result 852, Processing Time 0.02 seconds

GRADED PRIMAL SUBMODULES OF GRADED MODULES

  • Darani, Ahmad Yousefian
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.927-938
    • /
    • 2011
  • Let G be an abelian monoid with identity e. Let R be a G-graded commutative ring, and M a graded R-module. In this paper we first introduce the concept of graded primal submodules of M an give some basic results concerning this class of submodules. Then we characterize the graded primal ideals of the idealization R(+)M.

SOME RELATIONS BETWEEN FUNCTION SPACES ON R$^n$

  • Shin, Seung-Hyun
    • The Pure and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.31-34
    • /
    • 1995
  • Let R$^n$be n-th Euclidean space. Let be the n-th spere embeded as a subspace in R$\^$n+1/ centered at the origin. In this paper, we are going to consider the function space F = {f│f : S$^n$\longrightarrow S$^n$} metrized by as follow D(f,g)=d(f($\chi$), g($\chi$)) where f, g $\in$ F and d is the metric in S$^n$. Finally we want to find certain relation these spaces.(omitted)

  • PDF

On the Value Distribution of ff(k)

  • Wang, Jian-Ping
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.169-180
    • /
    • 2006
  • This paper proves the following results: Let $f$ be a transcendental entire function, and let $k({\geq})2$ be a positive integer. If $T(r,\;f){\neq}N_{1)}(r,1/f)+S(r,\;f)$, then $ff^{(k)}$ assumes every finite nonzero value infinitely often. Also the case when f is a transcendental meromorphic function has been considered and some results are obtained.

  • PDF

ALMOST MULTIPLICATIVE SETS

  • BAEK, HYUNG TAE;LIM, JUNG WOOK
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.259-266
    • /
    • 2021
  • Let R be a commutative ring with identity and let S be a nonempty subset of R. We define S to be an almost multiplicative subset of R if for each a, b ∈ S, there exist integers m, n ≥ 1 such that ambn ∈ S. In this article, we study some utilization of almost multiplicative subsets.

ORTHOGONAL GENERALIZED SYMMETRIC REVERSE BIDERIVATIONS IN SEMI PRIME RINGS

  • V.S.V. KRISHNA MURTY;C. JAYA SUBBA REDDY
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.3_4
    • /
    • pp.155-165
    • /
    • 2024
  • Let R be a semi-prime ring. Let [δ1, D1] and [δ2, D2] be two generalized symmetric reverse biderivations of R with associated reverse biderivations D1 and D2. The main aim of the present paper is to establish conditions of orthogonality for symmetric reverse biderivations and symmetric generalized reverse biderivations in R.

RAD-SUPPLEMENTING MODULES

  • Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.403-414
    • /
    • 2016
  • Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

A NOTE ON SKEW DERIVATIONS IN PRIME RINGS

  • De Filippis, Vincenzo;Fosner, Ajda
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.885-898
    • /
    • 2012
  • Let m, n, r be nonzero fixed positive integers, R a 2-torsion free prime ring, Q its right Martindale quotient ring, and L a non-central Lie ideal of R. Let D : $R{\rightarrow}R$ be a skew derivation of R and $E(x)=D(x^{m+n+r})-D(x^m)x^{n+r}-x^mD(x^n)x^r-x^{m+n}D(x^r)$. We prove that if $E(x)=0$ for all $x{\in}L$, then D is a usual derivation of R or R satisfies $s_4(x_1,{\ldots},x_4)$, the standard identity of degree 4.

An Ideal-based Extended Zero-divisor Graph on Rings

  • Ashraf, Mohammad;Kumar, Mohit
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.595-613
    • /
    • 2022
  • Let R be a commutative ring with identity and let I be a proper ideal of R. In this paper, we study the ideal based extended zero-divisor graph 𝚪'I (R) and prove that 𝚪'I (R) is connected with diameter at most two and if 𝚪'I (R) contains a cycle, then girth is at most four girth at most four. Furthermore, we study affinity the connection between the ideal based extended zero-divisor graph 𝚪'I (R) and the ideal-based zero-divisor graph 𝚪I (R) associated with the ideal I of R. Among the other things, for a radical ideal of a ring R, we show that the ideal-based extended zero-divisor graph 𝚪'I (R) is identical to the ideal-based zero-divisor graph 𝚪I (R) if and only if R has exactly two minimal prime-ideals which contain I.

A Note on Noetherian Polynomial Modules

  • Jung Wook Lim
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.3
    • /
    • pp.417-421
    • /
    • 2024
  • Let R be a commutative ring and let M be an R-module. In this note, we give a brief proof of the Hilbert basis theorem for Noetherian modules. This states that if R contains the identity and M is a Noetherian unitary R-module, then M[X] is a Noetherian R[X]-module. We also show that if M[X] is a Noetherian R[X]-module, then M is a Noetherian R-module and there exists an element e ∈ R such that em = m for all m ∈ M. Finally, we prove that if M[X] is a Noetherian R[X]-module and annR(M) = (0), then R has the identity and M is a unitary R-module.

Morse inequality for flat bundles

  • Kim, Hong-Jong
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.519-529
    • /
    • 1995
  • Let M be a compact smooth manifold of dimension n and let E be a flat (complet) vector bundle over M of rank r.

  • PDF