The Pure and Applied Mathematics 2 (1995), No 1, pp. 31-34 J. Korea Soc. of Math. Edu. (Series B)

SOME RELATIONS BETWEEN FUNCTION SPACES ON \mathbb{R}^n

SEUNG HYUN SHIN

1. Introduction

Let \mathbb{R}^n be n-th Euclidean space. Let be the n-th spere embedde as a subspace in \mathbb{R}^{n+1} centered at the origin.

In this paper, we are going to consider the function space

$$F = \{f|f: S^n \to S^n\}$$

metrized by as follow

$$D(f,g) = d(f(x), g(x))$$

where $f, g \in F$ and d is the metric in S^n . Finally we want to find certain relation these spaces.

In Section 2, we shown on the subsqpces on S^n . Of cause the members of F need not be continuous; we use the word mapping when continuity is implies. And then we shown several fundamental theorems in order to understand main results.

In Section 3, for the main our assertion i.e., Theorem 4; Suppose $f \in F_p$. Then $f \in M_p$ iff f is compact. Theorem 5; The space $F_p - Q_p$ is both open and dense in F_p .

2. Fundamental Theorems

In this Section we will show several fundamental theorems to make easy main theorems.

Typeset by AMS-TEX

At first we consider the subspaces

$$M = \{f | f \in F, f \text{ continuous on } S^n\}$$

 $G = \{f | f \in M, \text{ and onto } \}$
 $H = \{f | f \in M, \text{ and one to one} \}$

as well as M_p , G_p , and H_p . The space M is a closed, hence complete, subspace of F. The topology on M induced by the metric D is identical with the compact-open topology. It is an immediate consequence that the subspaces M including point m and G are closed, hence complete, for in each case the complement is member of the sub-base of the co-topology.

The first theorem below is an immediate consequence of the fact that S^n is not homeomorphic with a proper subset of itself. However here we derive this result from theorem 1, which is proved from the Borsuk-Ulam theorem: if f maps S^n into R^n , then f maps a pair of antipodal point into the same point.

Theorem 2.1. $H \subset G$.

Proof. If $f \in (M-G)$, then there is a point m such that $m \in (S^n - f(S^n))$. Let π denote a homeomorphism on $S^n - \{m\}$ onto R^n . Then $\pi f : S^n \to R^n$ is continuous and by the Borsuk theorem there is a point.

Corollary 2.2. If $h: S^n \to S^n$ is a homeomorphism, then h is onto.

Corresponding the any $f \in M$ and any $\epsilon > 0$, it is easy to find a function $g \in F - M$ such that $D(f,g) < \epsilon$; thus F - M is dense in F. Furthermore the example of a ratation through an arbitrarily small angle shows that the set $M - M_p$ is dense in M. On the other hand, it is a consequence of Borsuk-Vlam theorem that the set M - G is not dense in M. For if f is any map in M - G there is an x such that f(x) = f(-x); thus D(f, identity) > 1, so the identity map is an interior point of G.

With attention restricted now to subspace of M_p , it follows as above that G_p is closed in M_p and that G_p has nonempty interior.

By Theorem 1, we may consider H_p a subspace of G_p , and again it is easy to construct examples which show, in this case, that $G_p - H_p$ is dense in G_p but that H_p is not closed in G_p .

Necertheless, using an argument involving ϵ -mapping [2] p57, it is follows that H_p is a G_{δ} -subset of G_p hence is topologically complete.

Theorem 2.3. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a Homeomorphism. Then f is onto iff the image of each unbounded sequence is unbounded.

Proof. Suppose first that $f(R^n) = R^n$, that $\{x_n\}$ is an unbounded sequence, and that the image sequence $\{y_i\}$ is bounded. We may assume that $\{x_n\}$ has no limit point. There exists a subsequence $\{y_i'\}$ of $\{y_i\}$ converging to a point y and a point x such that y = f(x). But f^{-1} is continuous at y, hence $\{x_n\}$ must have a limit point. it is contradiction to the hypothesis.

Next suppose that the image of each unbounded sequence is unbounded. By Brower's theorem on invariance of domain [2] p95, $f(R^n)$ is open in R^n . If y is any limit point in R^n of $f(R^n)$, then there is a bounded sequence $\{y_i\}$ of distinct points in $f(R^n)$ converging to y.

If $x_i = f^{-1}(y_i)$, then $\{x_n\}$ is bounded and hence contains a convergent subsequence with limit x. But f is continuous at x, hence $y \in f(\mathbb{R}^n)$. Since $f(\mathbb{R}^n)$ is both open and closed in \mathbb{R}^n , $f(\mathbb{R}^n) = \mathbb{R}^n$.

Theorem 2.4. The set Φ of all homeomorphism on \mathbb{R}^n onto itself can be topologized as a complete metric space homeomorphic to H_p .

Proof. By Theorem 2.3, there is a natural 1-1 correspondence, via the stereographic projection $\pi: S^n \to \{p\} \to R^n$ with center p, between Φ and M_p . For suppose $f: S^n \to S^n$ is a function which is onto, one to one, and p fixed. Then if f is continuous at all $x \neq p$, f is continuous also at p and hence $f \in H_p$. The correspondence is then $f = \pi^{-1}\phi\pi$, where $\phi \in \Phi$ and $f \in H_p$.

3. Main Theorem.

In this section we consider the subspaces

$$F_p = \{ f \in F | f(p) = p \},$$

 $T_p = \{ f \in F_p | f \text{ continuous at each } x = p \},$
 $Q_p = \{ f \in T_p | f(S^n) \text{ is dense in } S^n \}.$

Finally we show certain relations between these spaces and those considered in Section 2.

If $f \in F - F_p$ and if $d(p, f(p)) = \epsilon$, then $D(f, g) < \epsilon$ implies $g \in F - F_p$ hence F_p is closed in F. Again, the example of a rotation through a sufficiently small angle shows that $F - F_p$ is dense in F_p .

The space M_p is a subset of T_p . By extending slightly the useful notation of compact mapping [6], this subspace has a simple characterization. Define $f \in F$ to be compact iff for each set K closed in S^n the set $f^{-1}(K)$ is closed in S^n .

Theorem 3.1. Suppose $f \in T_p$. Then $f \in M_p$ iff f is compact.

Proof. It $f \in M_p$ then f is continuous on S^n . On the other hand, if $f \in T_p - M_p$ there is a sequence $\{x_i\}$ such that $x_i \to p$, $f(x_i) \neq p$, and p is not a limit point of $\{f(x_i)\}$. If K is the close of the set $\{f(x_i)\}$ is not since it fails to contain p.

Since M_p is a closed subset of F, it follows that M_p is closed in T_p . The example of a small rotation except for a discontinuity at p(which is fixed) shows that $T_p - H_p$ is dence in T_p .

Theorem 3.2. The space $T_p - Q_p$ is both open and dense in T_p .

Proof. If $f \in F_p - Q_p$ then there is a spherical neighborhood of radius $\epsilon > 0$ contained in $S^n - f(S^n)$. For each $g \in T_p$, if $D(g, f) < \epsilon/3$ then $S^n - g(S^n)$ contains a spherical neighborhood, hence $g \in T_p - Q_p$. Now let $s(\epsilon)$ denote spherical neighborhood about p of radius ϵ and let g be defined by

$$g(x) = \begin{cases} p \text{ if } x = p \\ x \text{ if } x \in S^n - s(\epsilon) \text{ uniforml shinks } s(\epsilon) - \{p\} \text{ onto the annular region } s(\epsilon) - s(\epsilon/2) \end{cases}$$

Then if $f \in Q_p$, $\rho(f, g^{\circ}f) < \epsilon$ but $g^{\circ}f \in T_p - Q_p$.

REFERENCES

- 1. I.M.Gelfand, Generalized Functions Aca. Press.
- 2. T.Husain, Topology and Maps, Plenum Press (1977).
- 3. J.L.Kelly, General Topology, Von Nostrand (1955).
- 4. H.Sharp, Strongly topological imbedding of F_{σ} -subset of E^n , Amer, J.Math. (1953).
- 5. G.T.Whyburn, Analytic Topology, Amer.Math. Soc.Coll. (1982).
- 6. G.T. Whyburn, Topological Analysis, Princston Univ. (1958).

Department of Mathematics

Graduate School of Dankook University Seoul, 140-714, Korea