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MORSE INEQUALITY FOR FLAT BUNDLES

Hong-Jong KiMm

1. Introduction

Let M be a compact smooth manifold of dimension n and let E be a
flat (complex) vector bundle over M of rank r. The space of differential
forms on M with values in E is denoted by A*(E) := ®x»0A4*(E) and
the cohomology spaces of the elliptic complex

(1) 0 — A°(E) 25 AN(E) = - — A™(E) — 0

associated to the canonical flat connection D for E, will be denoted by
H*(E) := @kZOHk(E). Let bg ; := dim¢ H*{E). These numbers are
generalizations of the ordinary Betti numbers by = dim¢ H*¥(M, C) and
associated to a linear representation of the fundamental group = (M).
Let
bE(t) = Z I)E,ktk

k>0

be the generalized Poincaré polynomiael associated to the flat bundle E,
or the representation of m;1(M ). Then the Atiyah-Singer index formula
[AS] implies that the Euler-Poincaré characteristic of E is equal to r
times the Euler-Poincaré characteristic of M;

(2) X(E)=rxm.
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On the other hand, if f : M — R is a Morse function and ¢y
denotes the number of critical points of f of index &, then we have the

Morse polynomaal
cp(t) = Z Cf,ktk.

k>0

Now the classical Morse theory [Bott] says that there exists a polyno-
mial ¢¢(t) € Z[t] with nonnegative coefficients such that

cr(t)y —b(t) = (1+t)gs(t)

where b(t) is the ordinary Poincaré polynomial of M. Motivated with
this ‘inequality’” and the identity (2), we were able to deduce the follow-
ing result. Experts may have this result already but so far we cannot
find the published statement.

THEOREM 1.1. Let f be a Morse function on a compact manifold
M of dimension n and let E be a flat vector bundle over M of rank r.
Then there exists a polynomial ¢(t) € Z[t] with nonnegative coefficients
such that

‘I'(Zf(f) — l)E(f) =(1+ i)q(t).

Note that the above identity is equivalent to the following inequali-
ties

1
cro > =beo
P

1 .
cf1—Cpo 2 ;(bE,l —bgo)

1

Cfn — Cfn-1 + o+ (_1)an‘() = ;(bli,n - bE,n—l + -+ (—'1)nbE,O)
where f is an arbitrary Morse function on M and E is an arbitrary flat
vector bundle over M of rank r. Note that the left hand side of the
above inequality depends only on the function f and the right hand
side depends only on the flat bundle E. As a corollary,
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COROLLARY 1.2. For any integer k = 0,1,...,n,
1
Cfk 2> ;bE,k-

In particular, the number of critical points of a Morse function f is
greater than or equal to % Zk>0 bg i for any flat vector bundle E.

For the proof of Theorem 1.1, we follow the idea of Witten’s Morse
theory [Wit] proved by Roe [Roe].

Alternatively one may use the gradient flow method of Thom-Smale-
Witten-Floer [AB, F]. Namely, if C* denotes the direct sum of the fihers
E,., where x € M runs through all critical points of index k, then ome
can define a boundary operator

9 Cvk N Cvk-}-l
using ‘parallel translations’ along the gradient lines joining the «:t. al
points and show its cohomology spaces are equal to H*(E).
2. Morse inequalities for elliptic complex

Let E°, E',..., E' be hermitian vector bundles over a compac* Rie-
mannten manifold A and let

1 pl=t

oy P aee 1y P !
(3) P:0-C®E")—C®E')—...——=C®E) =0
be an elliptic complex, where C* denotes the space of smooth sect ons.

The cohomology spaces and their dimensions of this complex wi.. be
denoted by H¥(P) and bp, respectively. We put

bp(t):= Z bpyktk.

k>0
Using the global inner products

((E0,62)) = /M<sl,sz>czvol, €162 € C(EY),



522 Hong-Jong Kim

dvol being the canonical density on the Riemannian manifold M, we
have the formal adjoint (P*)* of P* and the “Laplacian”

OF := PF-1(PR1) 4 (PR PR . C®(EY) — C®(EY), k=0,...,L

These Laplacians are positive semi-definite elliptic operators with dis-
crete nonnegative eigenvalues and the exponentials

"0 LYEY) - LHEY), k=0,1,...,1

are bounded linear operators with smooth kernel and hence their traces
k
ppk = Tre™" are well defined.! Let

pp(t) = Z 1pitt.

k>0

Then the following lemma says that the Morse polynomial pup(t) of an
elliptic operator P dominates the Euler-Poincaré polynomral bp(t) of
P.

LEMMA 2.1. There exists a polynomial ¢(t) € R[t] with nonnegative
coefficients such that

up(t) —bp(t) = (1 + t)q(t).

Proof. If TX € C™(EY) denotes the A-eigenspace of 0% and +} :=
dimT%, for each A € R, then

k 8
Tre™ D = Ze—)‘vf‘\.
A

Note that y& = bp; by Hodge theory and

0 PU ) Pl Pl—l ;
0Ty —TI)—...— T3 —-0

Instead of the exponential function, we may take any smootkh rapidly decreasing
nonnegative function ¢ : Rt — R with ¢(0) = 1.
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is exact for A > 0. Thus if ¢ := dim P*¥(I'{) > 0, then for A > 0

k41
7,\—QA+QA+-

Now

pp(t) — bp(t Z(HPk ~ bpi)tt

k>0
N
:Z (Z e_’\'yf ) t*
ko \A>0 /
-5 (T )
k A>0
1+t)z (Z —A k+1)t
E \A>0 ,

This completes the proof.

3. Asymptotic behavior of smoothing kernel

Let F be a hermitian vector bundle over a compact Riemannian
manifold M and let
Q :C>®(F)— C>®(F)
be a positive semi-definite (self-adjoint) elliptic operator of order [ > 0.

Then
LEMMA 3.1. Let U be an open subset of M and C' > 0. Suppose

((Qs,5)) = Clls|i®

for any s € C®°(F) supported in U. If k is an integer with0 < k < C'+1,
then

11+ @)% %] < (1+C) e sl
for any s € C>(F') supported in U.

Proof. Let H be the closure of {s € C®°(F) :supps C U} in L2(F).
Then Q is a positive formally self-adjoint unbounded operator on H,
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and by Friedrich’s extension theorem () has a self-adjoint extension Q
satisfying the same positive condition. Now by the spectral theorem,

the operator norm of (1 + Q)*e~9 is bounded by (1 + Cike—C.

Let
J],JQ:F—)F

be self-adjoint vector bundle homomorphisms, where J, is positive
semi-definite. Let
Qu:=Q+th +1t*J,

for t € R. We will assume that
Q1 : C=(F) — C*(F)
1s a positive semi-definite elliptic operator so that e~@ is defined. Let
KNe: M x M3 (x,y) = K(x,y) € Hom(F,, F})

be the smoothing kernel of e~%" and hence
(o) = [ Kifay)stv)dvelly), Vs € C=(F).
M

Note that by the elliptic estimate, for any nonnegative integer m,
there exists a constant ¢,, > 0 such that

sttt < e (1|Qs |l + sllm), Vse C=(F),

where || || denotes the norm of the Sobolev space L? (F). Thus the
norm of

(1+ Q)™ LL(F) - Ly n(F)

is bounded by a polynomial in ¢.
Suppose Js is singular on a subset S of M. For any £ > 0, let

B :={z € M | dist(z,S) < €}.



Morse inequality for flat bundles 525

LEMMA 3.2.

tlim sup{|K¢(z,y)| : z,y € M — B} =0.

Proof. Since M is compact, there exists a constant C' > 0 such that
(Jas(z),s(z)) > 2C|s(2)]?, re€ M- B,, s €C®(F).

Now if t is large, for any s € C°°(F') supported in the complement of
B.,

({Qu(s),8)) = ({Qs,5)) + +{(J18,5) ) +°((as,5)) 2 C¥ls].

By the above lemma, for a given positive integer k, if ¢ is large, we
have

1+ Qu)*e sl < (14 Ct3)re I3

for any s € C*°(F) supported in the complement of B..

Let L? be the closure of {s € C®(F) : supps C M — B} in the
Sobolev space LY (F) and L? = L} .

Note that the sup norm of I is estimated by the operator norm of

e" @ LV L™
which is the composition

(14Q.)~*

(1+Qe)emQc )

I (1+Qt)-k> 2

for large k by the Sobolev embedding. Since the norm of
(14Q)™*: L* = Lf — L™
is bounded by a polynomial in ¢, the norm of the dual operator
(1+Q)™ : L' - L*

is also bounded by a polynomial in #. Thus the operator norm of
e=9 : L' — L is bounded by p(t)e“(“"2 for some polynomial p(t).
Now the result follows from this.
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4. Proof of the theorem 1.1

We fix an arbitrary Riemannian metric on M which is flat near the
set S := Crit f of the critical points of f.

Choose any hermitian structure for £ and let D* be the adjoint of
the flat connection D in the complex (complex). Then we have the
Laplacians '

A :=DoD*+D*oD: AN E) » A*(E)

for each k = 0,1,...,n. The space of harmonic sections, i.e., the kernel
of A¥ is, by Hodge theory, isomorphic to H*(E).

Now we change the given connection D using gauge transformations
e/ ' E — Efort € R and get

Di=e¢eVoDoel = D + text(df)

and
Di = D* + tint(df),

where ext(df) and int(df) denote the exterior multiplication and inte-
rior multiplication associated to the 1-form df. Our sign convention
for the interior multiplication is such that int(df) is the + adjoint of
ext(df), so that if

H := ext(df) + int(df)

then H? is just the multiplication by [df|*.
Now for each # € R we have the new Laplacian

Af =AY 1 4 2 H? ANE) — AME).

where J := D oint(df) + int(df ) o D + ext(df) o D* + D* o ext(df) is a
self-adjoint endomorphism of the vector bundle E* .= ‘NT*M)@ E.
Note that the kernel of A¥ is isomorphic to the kernel of A* which is
again isomorphic to H¥(E).
With ‘
pr(t) = Tr((f_afk ), k=0,1,...,n,

we have, as a corollary of lemma (2.1),
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LEMMA 4.1. For every t € R,

toft) > beo
pi(t) — polt) 2 bpa —beo

un(t) - ﬂn—-l(t) + -+ (‘—‘1)"#0(0 - bE',n. - I’E,n-—l + -+ (_l)nbE,O

Thus all we have to show is that p(t) converges to repx as t — oo.

Take € > 0 small enough so that the metric on M is flat on
B, = {z € M | dist(S,z) < €}

and the bundle E admits a “parallel frame” on B.. We can choose a
hermitian structure on E so that this local parallel frame is orthogonal.

Thus if p € M is a critical point of f of index ¢, then we can find a
local coordinate system (z1,...,2,): U — R" centered at p such that

fdcato st bt )
Then with respect to a Riemannian metric g on M with g = Z;’zl dr;®
dz; on U C B, and a local palallel frame (s; ,...,8,) for E, we have,

for a local section € = €151 + -+ + &5, of (A" T*AI) @ FEonl,

A¥e)y = (Lér,. .. L&)

where
n 2
L= ( ) v b 4 t(=Zy — = Zi+ Ziga + o+ Zn)
= Ox;
and
Z; = [ext(dx;),int(dz;)].
Note that

+dxj, A Aday, if 7€ {41, -7k}

Zi(dz;, A Adzj,) = o
i(dej, de i) {—dx,-l A-oAdey, € U dk)
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Thus
(=Z1v— —Z;4Zip 1+ +Zy)(dzj A Adzy, ) = 2((7—V)+(k—1/))—-ﬂ

where v is the number of elements in {1 n{h...., )
If

n 9 2
Liig =3 {— (a—z) +t%~f}+t(—zl — =2t Zig1 -+ Zy)

=1

acting on k-forms on R”, then it is positive semi-definite and the theory
of harmonic oscillator [Roe] implies that

Spec Ly ; 1 = t Spec Liix
and the ‘nullity’ of Ly ;% is 8;. Thus
=Ly ik

lim Tre = ;L.

t— 00
Moreover, if p € C(R") with p(0) = 1, then

lim Tr(pe_[""'"“) = k.
t—oc

Now let p : M — R be a smooth function such that
pla.,, =1,  suppp C B.

We have, therefore,
(4) Jim Tr(pe™0) = reg g

Finally

wa(t) :/ tr Ko(e, ) dvol(z)
M
= /” te((1 — p)K¢)dvol + /M tr(pky) dvol

:/ tr((1 ——p)]&’t)dvol—i-/ tr(pli'¢) dvol
M-B,,, B,

The first integral tends to 0 by the lemma kernel and the last integral
fB: tr(pIi;) dvol = Tr(pe“AtL) tends to rcs i by (4). This completes the
proof.
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