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A NOTE ON SKEW DERIVATIONS IN PRIME RINGS

Vincenzo De Filippis and Ajda Fošner

Abstract. Let m,n, r be nonzero fixed positive integers, R a 2-torsion
free prime ring, Q its right Martindale quotient ring, and L a non-central

Lie ideal of R. Let D : R −→ R be a skew derivation of R and E(x) =
D(xm+n+r)−D(xm)xn+r − xmD(xn)xr − xm+nD(xr). We prove that
if E(x) = 0 for all x ∈ L, then D is a usual derivation of R or R satisfies

s4(x1, . . . , x4), the standard identity of degree 4.

1. Introduction

Throughout, R will represent an associative ring with a center Z(R), Q its
right Martindale quotient ring, and C its extended centroid. Given an integer
n ≥ 2, a ring R is said to be n-torsion free if for x ∈ R, nx = 0 implies x = 0.
Recall that a ring R is prime if for a, b ∈ R, aRb = {0} implies that either
a = 0 or b = 0, and is semiprime if aRa = {0} implies a = 0. As usual, the
commutator xy − yx will be denoted by [x, y], x, y ∈ R. An additive mapping
D : R → R is called a derivation on R if D(xy) = D(x)y + xD(y) for all pairs
x, y ∈ R. Let a ∈ R be a fixed element. Then a map D : R → R defined by
D(x) = [a, x] = ax−xa, x ∈ R, is a derivation on R. Such derivation is usually
called an inner derivation defined by a.

Let α be an automorphism of a ring R. An additive mapping D : R → R is
called an α-derivation (or a skew derivation) on R ifD(xy) = D(x)y+α(x)D(y)
for all pairs x, y ∈ R. In this case α is called an associated automorphism of
D. Basic examples of α-derivations are usual derivations and the map α − 1,
where 1 denotes the identity map. Let b ∈ Q be a fixed element. Then it is
easy to see that a map D : R → R defined by D(x) = bx− α(x)b, x ∈ R, is an
α-derivation called an inner α-derivation (an inner skew derivation) defined by
b. If a skew derivation D is not inner, then it is outer.

An additive mapping F : R → R is called a generalized derivation on R if
there exists a derivation D on R such that F (xy) = F (x)y+xD(y) for all pairs
x, y ∈ R. Basic examples of generalized derivations are usual derivations on
R, left R-module mappings from R into itself, and so called generalized inner
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derivations, i.e., maps of the form x 7→ ax+xb, x ∈ R, where a, b ∈ Q are fixed
elements. Note also that generalized derivations and skew derivations are two
natural generalizations of usual derivations.

We say that an automorphism α : R → R is inner if there exists an invertible
q ∈ Q such that α(x) = qxq−1 for all x ∈ R. If an automorphism α ∈ Aut(R)
is not inner, then it is called outer.

Recently the following result was proved.

Theorem 1.1 ([6]). Let m and n be two fixed positive integers, R a 2-torsion
free prime ring, and L a non-central Lie ideal of R. If

F (xm+n+1) = F (x)xm+n + xmD(x)xn

is an identity for L, where both F and D are generalized derivations of R, then
either D = 0 or R satisfies the standard identity s4(x1, . . . , x4) and D is a
usual derivation of R.

Let us point out that in [6, Theorem 1] the authors also considered the form
of a generalized derivation F .

This result motivated us to investigate similar identity involving a skew
derivation of a prime ring. More precisely, our aim is to prove the following
theorem.

Theorem 1.2. Let m,n, r be nonzero fixed positive integers, R a 2-torsion free
prime ring, L a non-central Lie ideal of R, D : R −→ R a skew derivations of
R, and

E(x) = D(xm+n+r)−D(xm)xn+r − xmD(xn)xr − xm+nD(xr), x ∈ R.

If E(x) = 0 for all x ∈ L, then D is a usual derivation of R or R satisfies
s4(x1, . . . , x4), the standard identity of degree 4.

2. Preliminaries

In this section we will write down some known results which we will need in
the following.

Let R be a prime ring and I a two-sided ideal of R. Then I, R, and Q
satisfy the same generalized polynomial identities with coefficients inQ (see [2]).
Furthermore, I, R, and Q satisfy the same generalized polynomial identities
with automorphisms (Theorem 1 in [4]). Recall that in case char(R) = 0 an
automorphism α of Q is called Frobenius if α(x) = x for all x ∈ C. Moreover,
in case char(R) = p ≥ 2 an automorphism α is Frobenius if there exists a fixed

integer t such that α(x) = xpt

for all x ∈ C. In [4, Theorem 2] Chuang proved
that if Φ(xi, α(xi)) is a generalized polynomial identity for R, where R is a
prime ring and α ∈ Aut(R) an automorphism of R which is not Frobenius,
then R also satisfies the non-trivial generalized polynomial identity Φ(xi, yi),
where xi and yi are distinct indeterminates.
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Now, let R be a domain and α ∈ Aut(R) an automorphism of R which is
outer. In [8] Kharchenko proved that if Φ(xi, α(xi)) is a generalized polyno-
mial identity for R, then R also satisfies the non-trivial generalized polynomial
identity Φ(xi, yi), where xi and yi are distinct indeterminates.

In [5] Chuang and Lee investigated polynomial identities with skew deriva-
tions. They proved that if Φ(xi, D(xi)) is a generalized polynomial identity for
R, where R is a prime ring and D an outer skew derivation of R, then R also
satisfies the generalized polynomial identity Φ(xi, yi), where xi and yi are dis-
tinct indeterminates. Furthermore, they also proved [5, Theorem 1] that in the
case Φ(xi, D(xi), α(xi)) is a generalized polynomial identity for R, where R is a
prime ring, D an outer skew derivation of R, and α an outer automorphism of
R, then R also satisfies the generalized polynomial identity Φ(xi, yi, zi), where
xi, yi, and zi are distinct indeterminates.

Let us also mention that if R is a prime ring satisfying a non-trivial general-
ized polynomial identity and α an automorphism of R such that α(x) = x for
all x ∈ C, then α is an inner automorphism of R [1, Theorem 4.7.4].

For proving our main theorem we will also need the following lemma.

Lemma 2.1. Let R be a prime ring of characteristic different from 2, m,n, r
positive integers, and 0 ̸= b ∈ R such that

[r1, r2]
m(b[r1, r2]

n + [r1, r2]
nb)[r1, r2]

r = 0

for all r1, r2 ∈ R. Then R is commutative.

Proof. Firstly, assume that b ∈ Z(R). In this case R satisfies the generalized
identity 2b[x1, x2]

m+n+r = 0. Moreover, since 0 ̸= b ∈ Z(R), R satisfies the
polynomial identity [x1, x2]

m+n+r = 0. By the result in [7] (for a bounded
index on nilpotency), we conclude that R must be commutative.

Now suppose that b /∈ Z(R). Then

[x1, x2]
m(b[x1, x2]

n + [x1, x2]
nb)[x1, x2]

r = 0

is a non-trivial generalized polynomial identity for R. By Martindale’s theorem
[12], R is a primitive ring having a nonzero socle with C as the associated
division ring. In light of Jacobson’s theorem [9, p. 75], R is isomorphic to
a dense ring of linear transformations on some vector space V over C. Let
dimC V ≥ 3. Since b /∈ C, there exists v ∈ V such that {v, bv} are linearly
C-independent. Moreover, because of the dimension of V over C, there exists
w ∈ V such that {v, bv, w} are linearly C-independent. By the density of R,
there exist r1, r2 ∈ R such that

r1v = 0, r2v = w, r1w = v, r1bv = 0, r2bv = w.

By calculation we obtain the contradiction

0 = [r1, r2]
m(b[r1, r2]

n + [r1, r2]
nb)[r1, r2]

rv = 2v ̸= 0.
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Hence, we may assume that dimC V ≤ 2. So, either R is commutative, or
R ∼= M2(C), i.e., the 2 × 2 matrix ring over C. We have to prove that if
R ∼= M2(C), then a contradiction follows.

Denote by eij the usual unit matrix with 1 in the (i, j)-entry and zero else-
where. Let b =

∑
1≤i,j≤2 bijeij , where bij ∈ C. Recall that in case [r1, r2] ̸= 0

for some r1, r2 ∈ M2(C), then [r1, r2]
2 ∈ Z(R). More precisely, if [r1, r2] is an

invertible matrix, we have

(1) [r1, r2]b+ b[r1, r2] = 0.

Now consider [r1, r2] = e11 − e22 in (1). By calculation we get b11 = b22 = 0.
Analogously, for [r1, r2] = e12 + e21 in (1) we obtain b12 + b21 = 0. On the
other hand, for [r1, r2] = e21 − e12 in (1) we have b12 − b21 = 0. It follows that
b12 = b21 = 0. Thus, b = 0, a contradiction. □

We will end this section with one basic remark.

Remark 2.2. Our main assumption in Theorem 1.2 is

(2) D(xm+n+r) = D(xm)xn+r + xmD(xn)xr + xm+nD(xr)

for all x ∈ L. On the other hand, the skew-derivation rule says that

(3) D(xm+n+r) = D(xm)xn+r + α(xm)D(xn)xr + α(xm+n)D(xr)

for all x ∈ R. Therefore, by comparing (2) and (3) we get

(4) (α(xm)− xm)D(xn)xr + (α(xm+n)− xm+n)D(xr) = 0

for all x ∈ L.

3. The case of inner skew derivations

In this section we will consider the case when D : R → R is a nonzero
inner skew derivation on a prime ring R induced by the element b ∈ Q and an
automorphism α ∈ Aut(R), that is, D(x) = bx − α(x)b for all x ∈ R. In this
sense, our aim will be to prove the following proposition.

Proposition 3.1. Let R be a prime ring of characteristic different from 2, L
a non-central Lie ideal of R, m,n, r ≥ 1 fixed integers, b a nonzero element of
Q, and α ∈ Aut(R) an automorphism of R. If

(α(um)− um)(bun − α(un)b)ur + (α(um+n)− um+n)(bur − α(ur)b) = 0

for all u ∈ L, then one of the following holds:

(a) α = 1, the identity map on R;
(b) bx− α(x)b = 0 for all x ∈ R;
(c) R satisfies s4(x1, . . . , x4).

We begin with the following lemma.
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Lemma 3.2. Let R be a prime ring of characteristic different from 2, I a
two-sided ideal of R, m,n, r ≥ 1 fixed integers, b a nonzero element of Q, q an
invertible element of Q, and α(x) = qxq−1 for all x ∈ R. If

(α(um)− um)(bun − α(un)b)ur + (α(um+n)− um+n)(bur − α(ur)b) = 0

for all u ∈ [I, I], then one of the following holds:

(a) q ∈ C and hence α = 1, the identity map on R;
(b) q−1b ∈ C and hence bx− α(x)b = 0 for all x ∈ R;
(c) R satisfies s4(x1, . . . , x4).

Proof. By our assumption, I satisfies

(5) (q[x1, x2]
mq−1 − [x1, x2]

m)(b[x1, x2]
n − q[x1, x2]

nq−1b)[x1, x2]
r

+(q[x1, x2]
m+nq−1 − [x1, x2]

m+n)(b[x1, x2]
r − q[x1, x2]

rq−1b) = 0.

Since I and Q satisfy the same generalized polynomial identities with automor-
phisms Q also satisfies (5). Note that if {q−1b, 1} are linearly C-dependent,
then q−1b ∈ C and we are done. Hence, consider the case when {q−1b, 1}
are linearly C-independent. Then (5) is a non-trivial generalized polynomial
identity for Q. By Martindale’s theorem [12], Q is a primitive ring having a
nonzero socle with C as the associated division ring. In a light of Jacobson’s
theorem [9, p. 75], Q is isomorphic to a dense ring of linear transformations on
some vector space V over C. Of course, we may assume that dimC V ≥ 2.

First, suppose that the vector space V is finite dimensional over C, i.e.,
dimC V = k ≥ 2. Then Q ∼= Mk(C), the ring of k × k matrices over C.
We will denote by b =

∑
1≤i,j≤k bijeij and by c = q−1b =

∑
1≤i,j≤k cijeij for

bij , cij ∈ C.
Let i ̸= j and choose [x1, x2] = eii − ejj in (5). For all t ̸= i, j we have

ett(q(eii − ejj)
mq−1 − (eii − ejj)

m)(b(eii − ejj)
n − q(eii − ejj)

nq−1b)(eii − ejj)
rett

+ett(q(eii − ejj)
m+nq−1 − (eii − ejj)

m+n)(b(eii − ejj)
r − q(eii − ejj)

rq−1b)ett = 0.

Then

(6) qticit + γqtjcjt = 0

for all i ̸= j, t ̸= i, j, and γ = (−1)m+n+r. Recall that for any φ ∈ Aut(Q)

(φ(q)[x1, x2]
mφ(q)−1 − [x1, x2]

m)(φ(b)[x1, x2]
n − φ(q)[x1, x2]

nφ(q)−1φ(b))[x1, x2]
r

+(φ(q)[x1, x2]
m+nφ(q)−1 − [x1, x2]

m+n)(φ(b)[x1, x2]
r − φ(q)[x1, x2]

rφ(q)−1φ(b)) = 0

is also an identity for Q. Therefore, the matrices φ(q) and φ(c) must satisfy the
condition (6). In order to finish our proof we will use this argument a number
of times.

In particular, let

φ0(x) = (1 + eti)x(1− eti) = x+ etix− xeti − etixeti,

φ1(x) = (1− eti)x(1 + eti) = x− etix+ xeti − etixeti,
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and apply (6) to φ0(q) and φ0(c). Then we have

(7) (qii − qtt − qit)cit + γqijcjt = 0

for all i ̸= j and t ̸= i, j. Analogously, applying (6) to φ1(q) and φ1(c) we
obtain

(8) (−qii + qtt − qit)cit − γqijcjt = 0

for all i ̸= j and t ̸= i, j. Hence, by (7) and (8), and since char(R) ̸= 2, we
have

(9) qitcit = 0

for all i ̸= t. In the next step we will show that either q is a diagonal matrix
or c is a diagonal matrix. So, suppose that q is not diagonal. Then there exist
integers i ̸= t such that qit ̸= 0. By (9) it follows that cit = 0.

Now, let j ̸= i, t and

χ0(x) = (1 + eij)x(1− eij) = x+ eijx− xeij − eijxeij ,

χ1(x) = (1− eij)x(1 + eij) = x− eijx+ xeij − eijxeij .

Denote χ0(q) =
∑

χ(q)′hlehl, χ1(q) =
∑

χ(q)′′hlehl, χ0(c) =
∑

χ(c)′hlehl, and
χ1(c) =

∑
χ(c)′′hlehl. Here, χ(q)

′
hl, χ(q)

′′
hl, χ(c)

′
hl, χ(c)

′′
hl ∈ C. If both χ(q)′it = 0

and χ(q)′′it = 0, then qit + qjt = 0 = qit − qjt, which implies qit = 0, a
contradiction. Thus, at least one of χ(q)′it and χ(q)′′it is not zero. By applying
(9), we have that either χ(c)′it = 0 or χ(c)′′it = 0. So, 0 = cit ± cjt = cjt and
hence,

(10) qit ̸= 0 =⇒ crt = 0

for all r ̸= t.
Consider m ̸= i, t and

µ0(x) = (1 + etm)x(1− etm) = x+ etmx− xetm − etmxetm,

µ1(x) = (1− etm)x(1 + etm) = x− etmx+ xetm − etmxetm.

Denote µ0(q) =
∑

µ(q)′hlehl, µ1(q) =
∑

µ(q)′′hlehl, µ0(c) =
∑

µ(c)′hlehl, and
µ1(c) =

∑
µ(c)′′hlehl with µ(q)′hl, µ(q)

′′
hl, µ(c)

′
hl, µ(c)

′′
hl ∈ C. Then we can ob-

serve the following by (10).

• If 0 = µ(q)′im = qim − qit, then qim ̸= 0 and, by (10), crm = 0 for all
r ̸= m.

• If 0 = µ(q)′′im = qim + qit, then qim ̸= 0 and, by (10), crm = 0 for all
r ̸= m.

• If both µ(q)′im ̸= 0 and µ(q)′′im ̸= 0, then by (10), both µ(c)′rm = 0
and µ(c)′′rm = 0 for all r ̸= m. In particular, for r ̸= t this means that
0 = crm − crt, and since crt = 0 from (10) we have crm = 0. On the
other hand, for r = t we have both ctm − cmm + ctt − cmt = 0 and
ctm + cmm − ctt − cmt = 0. Since cmt = 0, by (10) and char(R) ̸= 2, it
follows that ctm = 0.
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Therefore, the previous step says that

(11) qit ̸= 0 =⇒ crm = 0

for all r ̸= m and m ̸= i. In other words, if qit ̸= 0, then the nonzero entries of
the matrix c are just on the i-th column and on the main diagonal.

Finally, let j ̸= i, t and

η0(x) = (1 + eji)x(1− eji) = x+ ejix− xeji − ejixeji,

η1(x) = (1− eji)x(1 + eji) = x− ejix+ xeji − ejixeji.

Denote η0(q) =
∑

η(q)′hlehl, η1(q) =
∑

η(q)′′hlehl, η0(c) =
∑

η(c)′hlehl, and
η1(c) =

∑
η(c)′′hlehl with η(q)′hl, η(q)

′′
hl, η(c)

′
hl, η(c)

′′
hl ∈ C. Also we can observe

the following by (11).

• If 0 = η(q)′jt = qjt + qit, then qjt ̸= 0 and, by (11), cri = 0 for all r ̸= i.
• If 0 = η(q)′′jt = qjt − qit, then qjt ̸= 0 and, by (11), cri = 0 for all r ̸= i.
• If both η(q)′jt ̸= 0 and η(q)′′jt ̸= 0, then by (11) all the entries in the
i-th column of η0(c) are zero. The same is true for the i-th column of
η1(c). In particular, for m ̸= j this means that 0 = η(c)′mi = cmi−cmj ,
and since cmj = 0 from (11) we have cmi = 0. On the other hand, for
m = j we have both 0 = η(c)′ji = cji + cii − cjj − cij and 0 = η(c)′′ji =
cji − cii + cjj − cij . Since cij = 0, by (11) and char(R) ̸= 2, it follows
that cji = 0.

This yields that if qit ̸= 0, then the nonzero entries of the matrix c are just
on the main diagonal. The previous argument says that either q is a diagonal
matrix or c is a diagonal matrix.

In the next step we will prove that either q is a central matrix or c is a
central matrix. To do this, we assume first that q is not a diagonal matrix.
So, suppose that qji ̸= 0 for some i ̸= j. As above, we introduce some suitable
automorphisms of Mk(C). More precisely, let m ̸= i, j and

λ0(x) = (1 + eim)x(1− eim) = x+ eimx− xeim − eimxeim,

λ1(x) = (1− emj)x(1 + emj) = x− emjx+ xemj − emjxemj .

Denote λ0(q) =
∑

λ(q)′hlehl, λ1(q) =
∑

λ(q)′′hlehl, λ0(c) =
∑

λ(c)′hlehl, and
λ1(c) =

∑
λ(c)′′hlehl with λ(q)′hl, λ(q)

′′
hl, λ(c)

′
hl, λ(c)

′′
hl ∈ C. Note that both

λ(q)′ji = qji ̸= 0 and λ(q)ji = qji ̸= 0. Therefore, both λ0(c) and λ1(c) are
diagonal matrices. In particular,

0 = λ(c)′im = cmm − cii,

0 = λ(c)′′mj = cjj − cmm,

and hence, cii = cjj = cmm and c is a central matrix in Mk(C).
Thus, we assume that q is a diagonal matrix. Moreover, if there exists an

automorphism θ of Mk(C) such that θ(q) is not diagonal, then, by the previous
argument, we can prove that θ(c) is central as well as c. Therefore, we may
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assume that θ(q) is a diagonal matrix for all θ ∈ Aut(Mk(C)). In particular,
let l ̸= t and

θ(x) = (1 + elt)x(1− elt) = x+ eltx− xelt − eltxelt.

Denote θ(q) =
∑

θ(q)′ijehl with θ(q)′ij ∈ C. Since θ(q) is diagonal, we have
θ(q)′lt = 0. Hence, qtt − qll = 0. In this case we conclude that q is a central
matrix and we are done.

At the end, suppose that dimC V = ∞ and assume that q /∈ C and c /∈ C.
Under this assumption there exist r1, r2 ∈ Q such that qr1 ̸= r1q and cr2 ̸= r2c.
By Litoff’s Theorem (see, for example, [10, p. 280]) there exist e2 = e ∈ Q and
a positive integer k = dimC(V e) such that

q, c, qr1, r1q, cr2, r2c, b, r1, r2 ∈ eQe ∼= Mk(C).

Moreover, eQe satisfies the identity(
(eqe)[x1, x2]

m(eq−1e)− [x1, x2]
m)((ebe)[x1, x2]

n − (eqe)[x1, x2]
n(eq−1be)

)
[x1, x2]

r

+
(
(eqe)[x1, x2]

m+n(eq−1e)− [x1, x2]
m+n)((ebe)[x1, x2]

r − (eqe)[x1, x2]
r(eq−1be)

)
= 0.

By the arguments in the previous case we have that either eqe ∈ Z(eQe) or
ece = eq−1be ∈ Z(eQe). Hence, one of the following holds:

• qr1 = eqr1 = eqer1 = r1eqe = r1qe = r1q,
• cr2 = ecr2 = ecer2 = r2ece = r2ce = r2c.

In both cases we have a contradiction. The proof of lemma is completed. □

Proof of Proposition 3.1. Set I = R[L,L]R. Then 0 ̸= [I,R] ⊆ L. Therefore,
by our hypothesis

(α(um)− um)(bun − α(un)b)ur + (α(um+n)− um+n)(bur − α(ur)b) = 0

for all u ∈ [I,R]. Since I, R, and Q satisfy the same generalized polynomial
identities with automorphisms it follows that Q satisfies

(α([x1, x2]
m)− [x1, x2]

m)(b[x1, x2]
n − α([x1, x2]

n)b)[x1, x2]
r

(12) +(α([x1, x2]
m+n)− [x1, x2]

m+n)(b[x1, x2]
r − α([x1, x2]

r)b) = 0.

In the case α is inner, then there exists an invertible element q ∈ Q such that
α(x) = qxq−1 for all x ∈ R. Hence, by Lemma 3.2 the result follows.

Next, suppose that α is outer. Since b ̸= 0, by the main theorem in [3],
Q satisfies a non-trivial generalized polynomial identity (Q is a GPI-ring).
Therefore, by [12, Theorem 3] Q is a primitive ring and it is a dense subring of
the ring of linear transformations of a vector space V over a division ring D.
Moreover, Q contains nonzero linear transformations of finite rank.

If α is not Frobenius, then by [4, Theorem 2] and (12) we have that Q
satisfies

([y1, y2]
m − [x1, x2]

m)(b[x1, x2]
n − [y1, y2]

nb)[x1, x2]
r

(13) +([y1, y2]
m+n − [x1, x2]

m+n)(b[x1, x2]
r − [y1, y2]

rb) = 0
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and, in particular, Q satisfies

(14) [x1, x2]
m(b[x1, x2]

n − [x1, x2]
nb)[x1, x2]

r = 0.

Thus, Q must be commutative from Lemma 2.1. On the other hand, if Q
is a domain, Q satisfies both (13) and (14), and, as above, we conclude that
Q is commutative. In the light of previous arguments we assume that α is
Frobenius and dimD V ≥ 2. Note that if char(R) = 0, we have α(x) = x for
all x ∈ R since α is Frobenious. By [1, Theorem 4.7.4] this implies that α
is inner, a contradiction. Thus, we may assume that char(R) = p > 2 and

α(γ) = γpt

for all γ ∈ C and some nonzero fixed integer t. In particular,

α([γx1, x2]) = γpt

α([x1, x2]). Hence, by replacing [x1, x2] with [γx1, x2] in (12)
we obtain that Q satisfies

γm+n+r(γm(pt−1)α([x1, x2]
m)− [x1, x2]

m)(b[x1, x2]
n − γn(pt−1)α([x1, x2]

n)b)[x1, x2]
r

+γm+n+r(γ(m+n)(pt−1)α([x1, x2]
m+n))(b[x1, x2]

r − γr(pt−1)α([x1, x2]
r)b)

−γm+n+r[x1, x2]
m+n(b[x1, x2]

r − γr(pt−1)α([x1, x2]
r)b) = 0

for all 0 ̸= γ ∈ C. Since γ ̸= 0, Q satisfies

(γm(pt−1)α([x1, x2]
m)− [x1, x2]

m)(b[x1, x2]
n − γn(pt−1)α([x1, x2]

n)b)[x1, x2]
r

+(γ(m+n)(pt−1)α([x1, x2]
m+n))(b[x1, x2]

r − γr(pt−1)α([x1, x2]
r)b)

(15) −[x1, x2]
m+n(b[x1, x2]

r − γr(pt−1)α([x1, x2]
r)b) = 0.

Since Q is a primitive ring with a nonzero socle, by [9, p. 79] there exists a
semi-linear automorphism T ∈ End(V ) such that α(x) = TxT−1 for all x ∈ R.
Hence, by (15), Q satisfies

(γm(pt−1)T [x1, x2]
mT−1−[x1, x2]

m)(b[x1, x2]
n−γn(pt−1)T [x1, x2]

nT−1b)[x1, x2]
r

+(γ(m+n)(pt−1)T [x1, x2]
m+nT−1)(b[x1, x2]

r − γr(pt−1)T [x1, x2]
rT−1b)

(16) −[x1, x2]
m+n(b[x1, x2]

r − γr(pt−1)T [x1, x2]
rT−1b) = 0.

Denote the identity (16) by Φ(x1, x2). Assume first that v and T−1bv are D-
dependent for all v ∈ V . More precisely, let T−1bv = λv for λ ∈ D. In this
case

(bx− TxT−1b)v = bxv − TxT−1bv = bxv − T (x(λv)) = bxv − T (λ(xv))

= bxv − T (T−1b)(xv) = bxv − bxv = 0

for all x ∈ R. This yields that (bx − α(x)b)V = {0} for all x ∈ R. Since V is
faithful it follows that bx− α(x)b = 0 for all x ∈ R and we are done.

Thus, there exists v0 ∈ V such that v0 and T−1cv0 are linearly D-independ-
ent. If dimD V ≥ 3, then there exists w ∈ V such that w, v, and T−1bv are
linearly D-independent. We will denote T−1bv = u. By the density of Q there
exist r1, r2, r3 ∈ Q such that

r1v = v, r2v = v, r1u = 0, r2u = w, r1w = u.
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Thus, by (16) we have the contradiction

0 = Φ(r1, r2)v = (−γ)r(p
t−1)bv ̸= 0.

Hence, we may consider the last case that dimD V = 2. Then Q is a finite-
dimensional central simple algebra over C since D is finite-dimensional over C.
Moreover, if C is finite, then D is finite. Thus, D is a commutative field and
we are done. So, we may assume that C is infinite. We will denote

Φ0 = −[x1, x2]
mb[x1, x2]

n+r − [x1, x2]
m+nb[x1, x2]

r,

Φ1 = α([x1, x2]
m)b[x1, x2]

n+r,

Φ2 = [x1, x2]
mα([x1, x2]

n)b[x1, x2]
r,

Φ3 = [x1, x2]
m+nα([x1, x2]

r)b,

Φ4 = −α([x1, x2]
m+n+r)b,

and from (15) we have that Q satisfies

(17) Φ0 + λ1Φ1 + λ2Φ2 + λ3Φ3 + λ4Φ4 = 0

for all 0 ̸= γ ∈ C. Here, λ1 = γm(pt−1), λ2 = γn(pt−1), λ3 = γr(pt−1), and

λ4 = γ(m+n+r)(pt−1). Replacing γ successively by 1, γ2, γ3, γ4 the identity (17)
gives the homogeneous system of equations:

Φ0 +Φ1 +Φ2 +Φ3 +Φ4 = 0
Φ0 + λ1Φ1 + λ2Φ2 + λ3Φ3 + λ4Φ4 = 0
Φ0 + λ2

1Φ1 + λ2
2Φ2 + λ2

3Φ3 + λ2
4Φ4 = 0

Φ0 + λ3
1Φ1 + λ3

2Φ2 + λ3
3Φ3 + λ3

4Φ4 = 0
Φ0 + λ4

1Φ1 + λ4
2Φ2 + λ4

3Φ3 + λ4
4Φ4 = 0

Moreover, since C is infinite, there exists infinitely many γ ∈ C such that

γh(pt−1) ̸= 1 for h = 1, . . . ,m+ n+ r. Hence, the Vandermonde determinant∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
1 λ1 λ2 λ3 λ4

1 λ2
1 λ2

2 λ2
3 λ2

4

1 λ3
1 λ3

2 λ3
3 λ3

4

1 λ4
1 λ4

2 λ4
3 λ4

4

∣∣∣∣∣∣∣∣∣∣
= ±(1− λ1) ·

∏
1≤i<j≤4

(λi − λj)

is not zero. Thus, we can solve the above system of equations and obtain Φ = 0.
Hence, Q satisfies

[x1, x2]
mb[x1, x2]

n+r + [x1, x2]
m+nb[x1, x2]

r = 0

and, by Lemma 2.1, Q is commutative, a contradiction. The proof of proposi-
tion is completed. □
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4. The proof of Theorem 1.2

We are now ready to prove the main result of this paper. So, let m,n, r be
nonzero fixed positive integers, R a 2-torsion free prime ring, L a non-central
Lie ideal of R, D : R −→ R a skew derivations of R, and

E(x) = D(xm+n+r)−D(xm)xn+r − xmD(xn)xr − xm+nD(xr), x ∈ R.

We have to prove that if E(x) = 0 for all x ∈ L, then D is a usual derivation
of R or R satisfies s4(x1, . . . , x4), the standard identity of degree 4.

Let α ∈ Aut(R) such that D(xy) = D(x)y + α(x)D(y) for all x, y ∈ R. In
the case α = 1, the identity map of R, there is nothing to prove. Hence, we
may assume that α ̸= 1.

We will divide the proof into two parts. Firstly, consider the case when D is
inner, i.e., there exists b ∈ Q such that D(x) = bx−α(x)b for all x ∈ R. In the
light of Proposition 3.1 we have that either D = 0 or R satisfies s4(x1, . . . , x4)
and we are done.

Now, assume that D is outer. As above, there exists a suitable two-sided
ideal I of R such that 0 ̸= [I,R] ⊆ L. Hence, by (4), I satisfies

(18) (α([x1, x2]
m)− [x1, x2]

m)D([x1, x2]
n)[x1, x2]

r

+(α([x1, x2]
m+n)− [x1, x2]

m+n)D([x1, x2]
r) = 0.

Since by [5, Theorem 2] I, R, and Q satisfy the same generalized polynomial
identities with a single skew derivation, Q satisfies the identity(18) as well.
Note that for 1 < n ∈ N

D(xn) =
n−1∑
i=0

α(xi)D(x)xn−i−1, x ∈ R,

and

D([x1, x2]) = D(x1)x2 + α(x1)D(x2)−D(x2)x1 − α(x2)D(x1), x1, x2 ∈ R.

By (18) we obtain

α([x1, x2]
m)

(n−1∑
i=0

α([x1, x2]
i)(D(x1)x2 + α(x1)D(x2)−D(x2)x1 − α(x2)D(x1))[x1, x2]

n−i−1

)
[x1, x2]

r

−[x1, x2]
m

(n−1∑
i=0

α([x1, x2]
i)(D(x1)x2 + α(x1)D(x2)−D(x2)x1 − α(x2)D(x1))[x1, x2]

n−i−1

)
[x1, x2]

r

+α([x1, x2]
m+n)

(r−1∑
j=0

α([x1, x2]
j)(D(x1)x2 + α(x1)D(x2)−D(x2)x1 − α(x2)D(x1))[x1, x2]

r−j−1

)

−[x1, x2]
m+n

(r−1∑
j=0

α([x1, x2]
j)(D(x1)x2 + α(x1)D(x2)−D(x2)x1 − α(x2)D(x1))[x1, x2]

r−j−1

)
= 0

for all x1, x2 ∈ Q. Since D is outer and by [5], Q satisfies

(19)

α([x1, x2]
m)

(n−1∑
i=0

α([x1, x2]
i)(y1x2 + α(x1)y2 − y2x1 − α(x2)y1)[x1, x2]

n−i−1

)
[x1, x2]

r
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−[x1, x2]
m

(n−1∑
i=0

α([x1, x2]
i)(y1x2 + α(x1)y2 − y2x1 − α(x2)y1)[x1, x2]

n−i−1

)
[x1, x2]

r

+α([x1, x2]
m+n)

(r−1∑
j=0

α([x1, x2]
j)(y1x2 + α(x1)y2 − y2x1 − α(x2)y1)[x1, x2]

r−j−1

)

−[x1, x2]
m+n

(r−1∑
j=0

α([x1, x2]
j)(y1x2 + α(x1)y2 − y2x1 − α(x2)y1)[x1, x2]

r−j−1

)
= 0.

Moreover, if α is outer, by [5] and identity (19), Q satisfies

(20)

[z1, z2]
m

(n−1∑
i=0

[z1, z2]
i(y1x2 + z1y2 − y2x1 − z2y1)[x1, x2]

n−i−1

)
[x1, x2]

r

−[x1, x2]
m

(n−1∑
i=0

[z1, z2]
i(y1x2 + z1y2 − y2x1 − z2y1)[x1, x2]

n−i−1

)
[x1, x2]

r

+[z1, z2]
m+n

(r−1∑
j=0

[z1, z2]
j(y1x2 + z1y2 − y2x1 − z2y1)[x1, x2]

r−j−1

)

−[x1, x2]
m+n

(r−1∑
j=0

[z1, z2]
j(y1x2 + z1y2 − y2x1 − z2y1)[x1, x2]

r−j−1

)
= 0.

In particular, if we write z1 = z2 = 0, y1 = x1, and y2 = x2 in (20), we get
that Q satisfies

−2[x1, x2]
m+n+r = 0.

In other words, Q is commutative (see [7] for a fixed bounded index of nilpo-
tency) and we are done.

At the end we have to consider the case when α is inner. So, there exists an
invertible element q ∈ Q such that α(x) = qxq−1 for all x ∈ R. Writing y1 = 0
and y2 = qy3 in (19) we obtain

(21)(
q[x1, x2]

mq−1 − [x1, x2]
m

)(n−1∑
i=0

(q[x1, x2]
iq−1)(q[x1, y3])[x1, x2]

n−i−1

)
[x1, x2]

r

(
q[x1, x2]

m+nq−1 − [x1, x2]
m+n

)(r−1∑
j=0

(q[x1, x2]
jq−1)(q[x1, y3])[x1, x2]

r−j−1

)
= 0

for all x1, x2, y3 ∈ Q. Denote the left hand side of the identity (21) by
P (x1, x2, y3). Note that q /∈ C since α ̸= 1. Therefore, (21) is a non-trivial
generalized polynomial identity for Q. By Martindale’s theorem [12], Q is a
primitive ring having a nonzero socle with C as the associated division ring.
In the light of Jacobson’s theorem [9, p. 75] a ring R is isomorphic to a dense
ring of linear transformations on some vector space V over C. Of course, we
may assume that dimC V ≥ 3.
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Since q /∈ C there exists v ∈ V such that v and qv are linearly C-independent.
Moreover, since dimC V ≥ 3 we can find w ∈ V such that {v, qv, w} are linearly
C-independent.

Assume first that r ≥ 2. By the density of Q, there exist r1, r2, r3 ∈ Q such
that

r1v = 0, r2v = w,

r1qv = w, r2qv = 0, r3qv = 0,

r1w = v, r2w = 0, r3w = −v.

Then [r1, r2]v = 0, [r1, r2]qv = 0, [r1, r3]qv = v. This yields that

0 = P (r1, r2, r3)qv = qv ̸= 0,

a contradiction. On the other hand, if r = 1, we can write (21) as follows(
q[x1, x2]

mq−1− [x1, x2]
m

)(n−1∑
i=0

(q[x1, x2]
iq−1)(q[x1, y3])[x1, x2]

n−i−1

)
[x1, x2]

+

(
q[x1, x2]

m+nq−1 − [x1, x2]
m+n

)
q[x1, y3] = 0.

By the density of Q, there exist r1, r2, r3 ∈ Q such that

r1v = 0, r2v = 0, r3v = w,

r1qv = w, r2qv = 0, r3qv = 0,

r1w = v, r2w = −qv.

Then [r1, r2]v = 0, [r1, r2]qv = qv, [r1, r3]v = v. This yields

0 = P (r1, r2, r3)v = −qv ̸= 0,

a contradiction. The proof of Theorem 1.2 is completed.

At the end we will give an example which shows that in our main theorem
we can not expect the conclusion that R is a commutative ring.

Example 4.1. Let R be a ring of all 2× 2 matrices over the field of complex
numbers and let α : R → R be an automorphism of R defined by α(x) = qxq−1

for all x ∈ R and some fixed invertible element q ∈ R. Let b ∈ R be a
fixed nonzero matrix. Consider a skew derivation D : R → R defined by
D(x) = bx − α(x)b for all x ∈ R. Let L = [R,R]. Then u2 ∈ Z(R) for all
u ∈ L. Hence, for m = r = 2 we have α(um) − um = qu2q−1 − u2 = 0 and
bur − α(ur)b = bu2 − qu2q−1b = bu2 − u2b = 0. Therefore, the hypothesis of
Theorem 1.2 are satisfied. Note also that R satisfies s4(x1, . . . , x4) but it is not
a commutative ring.
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