• Title/Summary/Keyword: LDO regulator

Search Result 73, Processing Time 0.024 seconds

Slew-Rate Enhanced Low-Dropout Regulator by Dynamic Current Biasing

  • Jeong, Nam Hwi;Cho, Choon Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.376-381
    • /
    • 2014
  • We present a CMOS rail-to-rail class-AB amplifier using dynamic current biasing to improve the delay response of the error amplifier in a low-dropout (LDO) regulator, which is a building block for a wireless power transfer receiver. The response time of conventional error amplifiers deteriorates by slewing due to parasitic capacitance generated at the pass transistor of the LDO regulator. To enhance slewing, an error amplifier with dynamic current biasing was devised. The LDO regulator with the proposed error amplifier was fabricated in a $0.35-{\mu}m$ high-voltage BCDMOS process. We obtained an output voltage of 4 V with a range of input voltages between 4.7 V and 7 V and an output current of up to 212 mA. The settling time during line transient was measured as $9{\mu}s$ for an input variation of 4.7-6 V. In addition, an output capacitor of 100 pF was realized on chip integration.

Multiple-Output Low Drop-Out Regulator With Constant Feedback Factor (고정 피드백 인자를 사용하는 다중출력 LDO 레귤레이터)

  • Mo, Hyunsun;Kim, Daejeong
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.384-392
    • /
    • 2018
  • A multiple-output LDO regulator is a good choice in terms of the efficiency in embedded systems requiring various supply voltages. A small feedback factor in LDO incurs the long settling time, resulting in large ripples in the time-multiplexing strategy. A new proposed topology enhances the settling time, and hence the ripples by incorporating the constant feedback factor with different reference voltages. The simulation results of a prototype design in a standard $0.35{\mu}m$ CMOS process verify that the proposed strategy enhances the settling time and ripple characteristic by more than doubled than a conventional circuit using the feedback factor of less than 0.4.

A Study on the Characteristics of the Vertical PNP transistor that improves the starting current (기동 전류를 개선한 수직 PNP 트랜지스터의 특성에 관한 연구)

  • Lee, Jung-Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In this paper, we introduce the characteristics of a vertical PNP transistor that improves start current by decreasing quiescent current with suppressing the parasitic transistor. In order to suppress the parasitic effect, we designed a vertical PNP transistor which suppresses parasitic PNP transistor by using the "DN+ links" without changing the circuit and made a LDO regulator using a standard IC processor. HFE of the fabricated parasitic PNP transistor decreased from conventional 18 to 0.9. Starting current of the LDO regulator made of the vertical PNP transistor using the improved "DN+ linked" structure is reduced from the conventional starting current of 90mA to 32mA. As the result, we developed a LDO regulator which consumes lower power in the standby state.

High PSRR Low-Dropout(LDO) Regulator (높은 PSRR을 갖는 Low-Dropout(LDO) 레귤레이터)

  • Kim, In-Hye;Roh, Jeong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.318-321
    • /
    • 2016
  • As IoT industry are growing fast, The importance of power management system is also being magnified. CMOS High power-supply rejection ratio(PSRR) Low-dropout(LDO) regulator is achieved by the proposed ripple Subtractor, Feed-forward capacitor and OTA in this paper. The LDO is implemented in $0.18-{\mu}m$ CMOS technology. With the proposed structures, in the maximum loading of 40mA, Simulation result achieves PSRR of -73.4dB at 500kHz and PSRR better than -40dB when frequency is below 10MHz with $6.8-{\mu}F$ output capacitor.

Design of ADC for Dual-loop Digital LDO Regulator (이중 루프 Digital LDO Regulator 용 ADC 설계)

  • Sang-Soon Park;Jeong-Hee Jeon;Jae-Hyeong Lee;Joong-Ho Choi
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.333-339
    • /
    • 2023
  • The global market for wearable devices is growing, driving demand for efficient PMICs. Wearable PMICs must be highly energy-efficient despite limited hardware resources. Advancements in process technology enable low-power consumption, but traditional analog LDO regulators face challenges with reduced power supply voltage. In this paper, a novel ADC design with a 3-bit continuous-time flash ADC for the coarse loop and a 5-bit discrete-time SAR ADC for the fine loop is proposed for digital LDO, achieving a 34.78 dB SNR and 5.39 bits ENOB in a 55-nm CMOS technology.

A Low-Noise Low Dropout Regulator in $0.18{\mu}m$ CMOS ($0.18{\mu}m$ CMOS 저 잡음 LDO 레귤레이터)

  • Han, Sang-Won;Kim, Jong-Sik;Won, Kwang-Ho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.52-57
    • /
    • 2009
  • This paper presents a low-noise low-dropout linear regulator that is suitable for on-chip integration with RF transceiver ICs. In the bandgap reference, a stacked diode structure is adopted for saving silicon area as well as maintaining low output noise characteristic. Theoretical analysis for supporting the approach is also described. The linear regulator is fabricated in $0.18{\mu}m$ CMOS process. It operates with an input voltage range of 2.2 V - 5 V and provide the output voltage of 1.8 V and the output current up to 90 mA. The measured line and load regulation is 0.04%/V and 0.46%, respectively. The output noise voltage is measured to be 479 nV/$^\surd{Hz}$ and 186 nV/$^\surd{Hz}$ from 100 Hz and 1 kHz offset, respectively.

A Fast Low Dropout Regulator with High Slew Rate and Large Unity-Gain Bandwidth

  • Ko, Younghun;Jang, Yeongshin;Han, Sok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.263-271
    • /
    • 2013
  • A low dropout regulator (LDO) with fast transient responses is presented. The proposed LDO eliminates the trade-off between slew rate and unity gain bandwidth, which are the key parameters for fast transient responses. In the proposed buffer, by changing the slew current path, the slew rate and unity gain bandwidth can be controlled independently. Implemented in $0.18-{\mu}m$ high voltage CMOS, the proposed LDO shows up to 200 mA load current with 0.2 V dropout voltage for $1{\mu}F$ output capacitance. The measured maximum transient output voltage variation, minimum quiescent current at no load condition, and maximum unity gain frequency are 24 mV, $7.5{\mu}A$, and higher than 1 MHz, respectively.

Low Drop-Out (LDO) Voltage Regulator with Improved Power Supply Rejection

  • Jang, Ho-Joon;Roh, Yong-Seong;Moon, Young-Jin;Park, Jeong-Pyo;Yoo, Chang-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • The power supply rejection (PSR) of low drop-out (LDO) voltage regulator is improved by employing an error amplifier (EA) which is configured so the power supply noise be cancelled at the output. The LDO regulator is implemented in a 0.13-${\mu}m$ standard CMOS technology. The external supply voltage level is 1.2-V and the output is 1.0-V while the load current can range from 0-mA to 50-mA. The power supply rejection is 46-dB, 49-dB, and 38-dB at DC, 2-MHz, and 10-MHz, respectively. The quiescent current consumption is 65-${\mu}A$.

Fast-Transient Digital LDO Regulator With Binary-Weighted Current Control (이진 가중치 전류 제어 기법을 이용한 고속 응답 디지털 LDO 레귤레이터)

  • Woo, Ki-Chan;Sim, Jae-Hyeon;Kim, Tae-Woo;Hwang, Seon-Kwang;Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1154-1162
    • /
    • 2016
  • This paper proposes a fast-transient digital LDO(Low dropout) regulator with binary-weighted current control technique. Conventional digital LDO takes a long time to stabilize the output voltage, because it controls the amount of current step by step, thus ringing problem is generated. Binary-weighted current control technique rapidly stabilizes output voltage by removing the ringing problem. When output voltage reliably reaches the target voltage, It added the FRZ mode(Freeze) to stop the operation of digital LDO. The proposed fast response digital LDO is used with a slow response DC-DC converter in the system which rapidly changes output voltage. The proposed digital controller circuit area was reduced by 56% compared to conventional bidirectional shift register, and the ripple voltage was reduced by 87%. A chip was implemented with a $0.18{\mu}F$ CMOS process. The settling time is $3.1{\mu}F$ and the voltage ripple is 6.2mV when $1{\mu}F$ output capacitor is used.

A 50-mA 1-nF Low-Voltage Low-Dropout Voltage Regulator for SoC Applications

  • Giustolisi, Gianluca;Palumbo, Gaetano;Spitale, Ester
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.520-529
    • /
    • 2010
  • In this paper, we present a low-voltage low-dropout voltage regulator (LDO) for a system-on-chip (SoC) application which, exploiting the multiplication of the Miller effect through the use of a current amplifier, is frequency compensated up to 1-nF capacitive load. The topology and the strategy adopted to design the LDO and the related compensation frequency network are described in detail. The LDO works with a supply voltage as low as 1.2 V and provides a maximum load current of 50 mA with a drop-out voltage of 200 mV: the total integrated compensation capacitance is about 40 pF. Measurement results as well as comparison with other SoC LDOs demonstrate the advantage of the proposed topology.