• Title/Summary/Keyword: LDO

Search Result 97, Processing Time 0.032 seconds

Implementation of a High Efficiency SCALDO Regulator Using MOSFET (MOSFET를 이용한 고효율 SCALDO 레귤레이터 구현)

  • Kwon, O-Soon;Son, Joon-Bae;Kim, Tea-Rim;Song, Jong-Gyu
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.304-310
    • /
    • 2015
  • A SCALDO(Supercapacitor Assisted LDO) regulator is a new regulator having advantages of a SMPS(Switch Mode Power Supply) which has a good efficiency and a LDO(Low Drop-out) regulator which has stable output characteristics and good EMI(Electro Magnetic Interference) characteristics. However, a conventional SCALDO regulator needs a lot of power consumption to control its switches and it drops an efficiency of the circuit. In this paper, to reduce switching power consumption and improve an efficiency of the circuit, a new SCALDO regulator adopting MOSFETs as its switching parts is proposed and it is found out that the proposed SCALDO regulator has the maximum 9.5% higher efficiency than the conventional SCALDO regulator. We also try to simplify production process of the circuit by changing switching control method of the circuit from MCU(Micro-controller unit) based firmware control to hardware control using a comparator and a T-F/F(Flip Flop).

A Capacitorless Low-Dropout Regulator With Enhanced Response Time (응답 시간을 향상 시킨 외부 커패시터가 없는 Low-Dropout 레귤레이터 회로)

  • Yeo, Jae-Jin;Roh, Jeong-Jin
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.506-513
    • /
    • 2015
  • In this paper, an output-capacitorless, low-dropout (LDO) regulator is designed, which consumes $4.5{\mu}A$ quiescent current. Proposed LDO regulator is realized using two amplifier for good load regulation and fast response time, which provide high gain, high bandwidth, and high slew rate. In addition, a one-shot current boosting circuit is added for current control to charge and discharge the parasitic capacitance at the pass transistor gate. As a result, response time is improved during load-current transition. The designed circuit is implemented through a $0.11-{\mu}m$ CMOS process. We experimentally verify output voltage fluctuation of 260mV and recovery time of $0.8{\mu}s$ at maximum load current 200mA.

A Capacitor-less Low Dropout Regulator for Enhanced Power Supply Rejection

  • Yun, Seong Jin;Kim, Jeong Seok;Jeong, Taikyeong Ted.;Kim, Yong Sin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.152-157
    • /
    • 2015
  • Various power supply noise sources in a system integrated circuit degrade the performance of a low dropout (LDO) regulator. In this paper, a capacitor-less low dropout regulator for enhanced power supply rejection is proposed to provide good power supply rejection (PSR) performance. The proposed scheme is implemented by an additional capacitor at a gate node of a pass transistor. Simulation results show that the PSR performance of the proposed LDO regulator depends on the capacitance value at the gate node of the pass transistor, that it can be maximized, and that it outperforms a conventional LDO regulator.

Low Drop-Out (LDO) Voltage Regulator with Improved Power Supply Rejection

  • Jang, Ho-Joon;Roh, Yong-Seong;Moon, Young-Jin;Park, Jeong-Pyo;Yoo, Chang-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • The power supply rejection (PSR) of low drop-out (LDO) voltage regulator is improved by employing an error amplifier (EA) which is configured so the power supply noise be cancelled at the output. The LDO regulator is implemented in a 0.13-${\mu}m$ standard CMOS technology. The external supply voltage level is 1.2-V and the output is 1.0-V while the load current can range from 0-mA to 50-mA. The power supply rejection is 46-dB, 49-dB, and 38-dB at DC, 2-MHz, and 10-MHz, respectively. The quiescent current consumption is 65-${\mu}A$.

Slew-Rate Enhanced Low-Dropout Regulator by Dynamic Current Biasing

  • Jeong, Nam Hwi;Cho, Choon Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.376-381
    • /
    • 2014
  • We present a CMOS rail-to-rail class-AB amplifier using dynamic current biasing to improve the delay response of the error amplifier in a low-dropout (LDO) regulator, which is a building block for a wireless power transfer receiver. The response time of conventional error amplifiers deteriorates by slewing due to parasitic capacitance generated at the pass transistor of the LDO regulator. To enhance slewing, an error amplifier with dynamic current biasing was devised. The LDO regulator with the proposed error amplifier was fabricated in a $0.35-{\mu}m$ high-voltage BCDMOS process. We obtained an output voltage of 4 V with a range of input voltages between 4.7 V and 7 V and an output current of up to 212 mA. The settling time during line transient was measured as $9{\mu}s$ for an input variation of 4.7-6 V. In addition, an output capacitor of 100 pF was realized on chip integration.

A 50-mA 1-nF Low-Voltage Low-Dropout Voltage Regulator for SoC Applications

  • Giustolisi, Gianluca;Palumbo, Gaetano;Spitale, Ester
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.520-529
    • /
    • 2010
  • In this paper, we present a low-voltage low-dropout voltage regulator (LDO) for a system-on-chip (SoC) application which, exploiting the multiplication of the Miller effect through the use of a current amplifier, is frequency compensated up to 1-nF capacitive load. The topology and the strategy adopted to design the LDO and the related compensation frequency network are described in detail. The LDO works with a supply voltage as low as 1.2 V and provides a maximum load current of 50 mA with a drop-out voltage of 200 mV: the total integrated compensation capacitance is about 40 pF. Measurement results as well as comparison with other SoC LDOs demonstrate the advantage of the proposed topology.

Evaluation of EM Susceptibility of an PLL on Power Domain Networks of Various Printed Circuit Boards (다양한 PCB의 전원 분배 망에서의 PLL의 전자기 내성 검증)

  • Hwang, Won-Jun;Wee, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.74-82
    • /
    • 2015
  • As the complexity of an electronic device and the reduction of its operating voltage is progressing, susceptibility test of the chip and module for internal or external noises is essential. Although the immunity compliance of the chip was served with IEC 62132-4 Direct Power Injection method as an industry standard, in fact, EM immunity of the chip is influenced by their Power Domain Network (PDN). This paper evaluates the EM noise tolerance of a PLL and compares their noise transfer characteristics to the PLL on various PCB boards. To make differences of the PDNs of PCBs, various PCBs with or without LDO and with several types of capacitors are tested. For evaluation of discrepancies between EM characteristics of an IC only and the IC on real boards, the analysis of the noise transfer characteristics according to the PDNs shows that it gives important information for the design having robust EM characteristics. DPI measurement results show that greatly improved immunity of the PLL in the low-frequency region according to using the LDO and a frequency change of the PLL according to the DPI could also check with TEM cell measurement spectrum.

A Multi-Harvested Self-Powered Sensor Node Circuit (다중 에너지 수확을 이용한 자가발전 센서노드 회로)

  • Seo, Yo-han;Lee, Myeong-han;Jung, Sung-hyun;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.585-588
    • /
    • 2014
  • This paper presents a self-powered sensor node circuit using photovoltaic and vibration energy harvesting. The harvested energy from a solar cell and a vibration device(PZT) is stored in a storage capacitor. The stored energy is managed by a PMU(Power Management Unit). In order to supply a stable voltage to the sensor node, an LDO(Low Drop Out Regulator) is used. The LDO drives a temperature sensor and a SAR ADC(Successive Approximate Register Analog-to-Digital Converter), and 10-bit digital output data corresponding to current temperature is obtained. The proposed circuit is designed in a 0.35um CMOS process, and the designed chip size including PADs is $1.1mm{\times}0.95mm$.

  • PDF

Low Dropout Voltage Regulator Using 130 nm CMOS Technology

  • Marufuzzaman, Mohammad;Reaz, Mamun Bin Ibne;Rahman, Labonnah Farzana;Mustafa, Norhaida Binti;Farayez, Araf
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.257-260
    • /
    • 2017
  • In this paper, we present the design of a 4.5 V low dropout (LDO) voltage regulator implemented in the 130 nm CMOS process. The design uses a two-stage cascaded operational transconductance amplifier (OTA) as an error amplifier, with a body bias technique for reducing dropout voltages. PMOS is used as a pass transistor to ensure stable output voltages. The results show that the proposed LDO regulator has a dropout voltage of 32.06 mV when implemented in the130 nm CMOS process. The power dissipation is only 1.3593 mW and the proposed circuit operates under an input voltage of 5V with an active area of $703{\mu}m^2$, ensuring that the proposed circuit is suitable for low-power applications.

A Design of Power Management IC for CCD Image Sensor (CCD 이미지 센서용 Power Management IC 설계)

  • Koo, Yong-Seo;Lee, Kang-Yoon;Ha, Jae-Hwan;Yang, Yil-Suk
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.63-68
    • /
    • 2009
  • The power management integrated circuit(PMIC) for CCD image sensor is presented in this study. A CCD image sensor is very sensitive against temperature. The temperature, that is heat, is generally generated by the PMIC with low efficiency. Since the generated heat influences performance of CCD image sensor, it should be minimized by using a PMIC which has a high efficiency. In order to develop the PMIC with high efficiency, the input stage is designed with synchronous type step down DC-DC converter. The operating range of the converter is from 5V to 15V and the converter is controlled using PWM method. The PWM control circuit consists of a saw-tooth generator, a band-gap reference circuit, an error amplifier and a comparator circuit. The saw-tooth generator is designed with 1.2MHz oscillation frequency. The comparator is designed with the two stages OP Amp. And the error amplifier has 40dB DC gain and $77^{\circ}$ phase margin. The output of the step down converter is connected to input stage of the charge pump. The output of the charge pump is connected to input of the LDO which is the output stage of the PMIC. Finally, the PMIC, based on the PWM control circuit and the charge pump and the LDO, has output voltage of 15V, -7.5V, 3.3V and 5V. The PMIC is designed with a 0.35um process.

  • PDF