• Title/Summary/Keyword: Knots

Search Result 427, Processing Time 0.02 seconds

Splines via Computer Programming

  • 김경태
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.1 no.1
    • /
    • pp.72-74
    • /
    • 1983
  • Traditionally, polynomials have been used to approximte functions with prescribed values at a number of points(called the knots) on a given interal on the real line. The method of splines recently developed is more flexible. It approximates a function in a piece-wise fashion, by means of a different polynomial in each subinterval. The cubic spline gas ets origins in beam theory. It possessed continuous first and second deriatives at the knots and is characterised by a minimum curvature property which es rdlated to the physical feature of minimum potential energy of the supported beam. Translated into mathematical terms, this means that between successive knots the approximation yields a third-order polynomial sith its first derivatives continuous at the knots. The minimum curvature property holds good for each subinterval as well as for the whole region of approximation This means that the integral of the square of the second derivative over the entire interval, and also over each subinterval, es to be minimized. Thus, the task of determining the spline lffers itself as a textbook problem in discrete computer programming, since the integral of ghe square of the second derivative can be obviously recognized as the criterion function whicg gas to be minimized. Starting with the initial value of the function and assuming an initial solpe of the curve, the minimum norm property of the curvature makes sequential decision of the slope at successive knots (points) feasible. It is the aim of this paper to derive the cubic spline by the methods of computer programming and show that the results which is computed the all the alues in each subinterval of the spline approximations.

On Minimal Unknotting Crossing Data for Closed Toric Braids

  • Siwach, Vikash;Prabhakar, Madeti
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.331-360
    • /
    • 2017
  • Unknotting numbers for torus knots and links are well known. In this paper, we present a new approach to determine the position of unknotting number crossing changes in a toric braid such that the closure of the resultant braid is equivalent to the trivial knot or link. Further we give unknotting numbers of more than 600 knots.

ON INFINITE CLASSES OF GENUS TWO 1-BRIDGE KNOTS

  • Kim, Soo-Hwan;Kim, Yang-Kok
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.531-544
    • /
    • 2004
  • We study a family of 2-bridge knots with 2-tangles in the 3-sphere admitting a genus two 1-bridge splitting. We also observe a geometric relation between (g - 1, 1)-splitting and (g,0)- splitting for g = 2,3. Moreover we construct a family of closed orientable 3-manifolds which are n-fold cyclic coverings of the 3-sphere branched over those 2-bridge knots.

CYCLIC PRESENTATIONS OF GROUPS AND CYCLIC BRANCHED COVERINGS OF (1, 1)-KNOTS

  • Mulazzani, Michele
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.101-108
    • /
    • 2003
  • In this paper we study the connections between cyclic presentations of groups and cyclic branched coverings of (1, 1)- knots. In particular, we prove that every π-fold strongly-cyclic branched covering of a (1, 1)-knot admits a cyclic presentation for the fundamental group encoded by a Heegaard diagram of genus π.

Alexander Polynomials of Knots Which Are Transformed into the Trefoil Knot by a Single Crossing Change

  • Nakanishi, Yasutaka
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • By the works of Kondo and Sakai, it is known that Alexander polynomials of knots which are transformed into the trivial knot by a single crossing change are characterized. In this note, we will characterize Alexander polynomials of knots which are transformed into the trefoil knot (and into the figure-eight knot) by a single crossing change.

REPRESENTATIONS OF n-FOLD CYCLIC BRANCHED COVERINGS OF (1, 1)-KNOTS UP TO 10 CROSSINGS AS DUNWOODY MANIFOLDS

  • Kim, Geunyoung;Lee, Sang Youl
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • In this paper, we discuss the relationship between doubly-pointed Heegaard diagrams of (1, 1)-knots in lens spaces and Dunwoody 3-manifolds, and then give explicit representations of n-fold cyclic branched coverings of all (1, 1)-knots in S3 up to 10 crossings in Rolfsen's knot table as Dunwoody 3-manifolds.

AN ALTERNATIVE PROOF FOR THE MINIMALITY OF STRONGLY QUASI-POSITIVE FIBERED KNOTS IN THE RIBBON CONCORDANCE POSET

  • Keiji Tagami
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.779-784
    • /
    • 2024
  • Baker proved that any strongly quasi-positive fibered knot is minimal with respect to the ribbon concordance among fibered knots in the three-sphere. By applying Rapaport's conjecture, which has been solved by Kochloukova, we can check that any strongly quasi-positive fibered knot is minimal with respect to the ribbon concordance among all knots in the three-sphere. In this short note, we give an alternative proof for the fact by utilizing the knot Floer homology.

Divide Knot Presentation of Knots of Berge's Sporadic Lens Space Surgery

  • Yamada, Yuichi
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.255-277
    • /
    • 2020
  • Divide knots and links, defined by A'Campo in the singularity theory of complex curves, is a method to present knots or links by real plane curves. The present paper is a sequel of the author's previous result that every knot in the major subfamilies of Berge's lens space surgery (i.e., knots yielding a lens space by Dehn surgery) is presented by an L-shaped curve as a divide knot. In the present paper, L-shaped curves are generalized and it is shown that every knot in the minor subfamilies, called sporadic examples of Berge's lens space surgery, is presented by a generalized L-shaped curve as a divide knot. A formula on the surgery coefficients and the presentation is also considered.

THE BASKET NUMBERS OF KNOTS

  • Bang, Je-Jun;Do, Jun-Ho;Kim, Dongseok;Kim, Tae-Hyung;Park, Se-Han
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.115-128
    • /
    • 2015
  • Plumbing surfaces of links were introduced to study the geometry of the complement of the links. A basket surface is one of these plumbing surfaces and it can be presented by two sequential presentations, the first sequence is the flat plumbing basket code found by Furihata, Hirasawa and Kobayashi and the second sequence presents the number of the full twists for each of annuli. The minimum number of plumbings to obtain a basket surface of a knot is defined to be the basket number of the given knot. In present article, we first find a classification theorem about the basket number of knots. We use these sequential presentations and the classification theorem to find the basket number of all prime knots whose crossing number is 7 or less except two knots $7_1$ and $7_5$.

Local Moves and Gordian Complexes, II

  • Nakanishi, Yasutaka
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.329-334
    • /
    • 2007
  • By the works of Levine [2] and Rolfsen [5], [6], it is known that a local move called a crossing-change is strongly related to the Alexander invariant. In this note, we will consider to what degree the relationship is strong. Let K be a knot, and $K^{\times}$ the set of knots obtained from a knot K by a single crossing-change. Let MK be the Alexander invariant of a knot K, and MK the set of the Alexander invariants $\{MK\}_{K{\in}\mathcal{K}}$ for a set of knots $\mathcal{K}$. Our main result is the following: If both $K_1$ and $K_2$ are knots with unknotting number one, then $MK_1=MK_2$ implies $MK_1^{\times}=MK_2^{\times}$. On the other hand, there exists a pair of knots $K_1$ and $K_2$ such that $MK_1=MK_2$ and $MK_1^{\times}{\neq}MK_2^{\times}$. In other words, the Gordian complex is not homogeneous with respect to Alexander invariants.

  • PDF