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Abstract. By the works of Kondo and Sakai, it is known that Alexander polynomi-

als of knots which are transformed into the trivial knot by a single crossing change are

characterized. In this note, we will characterize Alexander polynomials of knots which

are transformed into the trefoil knot (and into the figure-eight knot) by a single crossing

change.

1. Introduction

This note is a continuation of the previous work [4]. In the addendum, the
author gave a necessary condition for Alexander polynomials of knots which are
transformed into the trefoil knot by a single crossing change. By a refinement of
this argument, we give a necessary and sufficient condition in this note.

Seifert [8] gave a characterization of the set of Alexander polynomials of all
knots as the set of Laurent polynomials f(t) with integral coefficients satisfying the
following two conditions; (1) f(t−1) = f(t), and (2) |f(1)| = 1.

A crossing change is a local move to exchange an over-crossing and an under-
crossing between two knot diagrams K1 and K2 which are identical except near one
point. Furthermore, we consider its spatial realization as follows: For two knots k1
and k2 represented by K1 and K2, k1 and k2 are said to be transformed into each
other by a single crossing change.

Let k be a knot, and k× the set of all knots obtained from k by a single cross-
ing change. Let ∆k(t) be the Alexander polynomial of k, and ∆K the set of the
Alexander polynomials {∆k(t)}k∈K for a set of knots K.

For the trivial knot O, Kondo [2] and Sakai [7] independently gave a charac-
terization of ∆O× as the set of Laurent polynomials f(t) satisfying the following
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two conditions; (1) f(t−1) = f(t), and (2) |f(1)| = 1. In other words, there are
no obstructions on Alexander polynomials for knots to be unknotting number one
knots.

For the trefoil knot 31, we give a characterization of ∆31
× as follows:

Theorem 1. Let ζ be a complex number such that ζ − 1 + ζ−1 = 0. A Laurent
polynomial f(t) is contained in ∆31

× if and only if f(t) satisfies the following three
conditions; (1) f(t−1) = f(t), (2) |f(1)| = 1, and (3) f(ζ) = ±(a2 − ab + b2) for
some integers a, b ∈ Z.

Remark 2. By a standard argument in Number Theory, Theorem 1 can be trans-
lated into the following. Let ζ be a complex number such that ζ − 1 + ζ−1 = 0.
A Laurent polynomial f(t) is contained in ∆31

× if and only if f(t) satisfies the
following three conditions; (1) f(t−1) = f(t), (2) |f(1)| = 1, and (3) f(ζ) = 0,±1,
or ±pe11 · · · penn where pi’s are prime numbers, ei’s are even integers for pi = 2, 3k+2,
and ei’s are arbitrary integers for pi = 3, 3k + 1.

By the parallel argument, we give a similar result for the figure-eight knot 41
as follows:

Theorem 3. Let ζ be a complex number such that ζ − 3 + ζ−1 = 0. A Laurent
polynomial f(t) is contained in ∆41

× if and only if f(t) satisfies the following three
conditions; (1) f(t−1) = f(t), (2) |f(1)| = 1, and (3) f(ζ) = ±(a2 − 3ab + b2) for
some integers a, b ∈ Z.

Remark 4. By a standard argument in Number Theory, Theorem 3 can be trans-
lated into the following. Let ζ be a complex number such that ζ − 3 + ζ−1 = 0. A
Laurent polynomial f(t) is contained in ∆41

× if and only if f(t) satisfies the fol-
lowing three conditions; (1) f(t−1) = f(t), (2) |f(1)| = 1, and (3) f(ζ) = 0,±1, or
±pe11 · · · penn where pi’s are prime numbers, ei’s are even integers for pi = 2, 3, 5k±2,
and ei’s are arbitrary integers for pi = 5, 5k ± 1.

The proofs of Theorems 1 and 3 are given in Section 3. The quick reviews for
Remarks 2 and 4 are given in Section 4. In Section 2, we see the key fact of surgical
description.

2. Surgical description

Let k0 be a knot which is transformed into the trivial knot by a single crossing
change. We assume that a knot k is transformed into k0 by a single crossing change.
Then, k is transformed into the trivial knot by twice crossing changes. By a surgical
description of Alexander matrices, we can have the following.

Proposition 5. Let k0 be a knot which is transformed into the trivial knot by
a single crossing change. If a knot k is transformed into k0 by a single crossing

change, then k has an Alexander matrix M(t) =

(
∆k0(t) r(t−1)
r(t) m(t)

)
of the following
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form:

(1) ∆k0(t) is the Alexander polynomial of k0,

(2) m(t−1) = m(t) and |m(1)| = 1, and

(3) r(1) = 0.

On the other hand, for the matrix M(t) satisfying the above conditions (1), (2),
and (3), there exists a knot k which is transformed into k0 by a single crossing
change such that M(t) is an Alexander matrix of k.

We remark that the Alexander polynomial of a knot is determined by the de-
terminant of Alexander matrices from a surgical view up to signs. The proof of
Proposition 5 is essentially given in [3, 5, 6], and also in the previous note [4].
The proof in [4] should need a correction. The readers should read “m(t) =

1 + (a2 + 1)
(√

t− 1√
t

)2

+ · · · + (a2n−2 + 1)
(√

t− 1√
t

)2n−2

+ a2n

(√
t− 1√

t

)2n

”

as “m(t) = 1 + (a2 + 1)
(√

t− 1√
t

)2

+ · · · + (−1)n(a2n−2 + 1)
(√

t− 1√
t

)2n−2

+

(−1)n+1a2n

(√
t− 1√

t

)2n

” in the lines −13-−12 in the page 331.

3. Proofs of theorems

As the proofs of Theorems 1 and 3 are parallel, we give the proof of Theorem 1
mainly. We divide the proofs into two parts.

3.1. Necessity part

Let k be a knot which is transformed into the trefoil knot by a single cross-
ing change. From Proposition 5, the Alexander polynomial of k, ∆k(t), is pre-

sented by the determinant up to signs: ∆k(t) = ±det

(
∆31(t) r(t−1)
r(t) m(t)

)
with

∆31(t) = t− 1 + t−1, m(t−1) = m(t), |m(1)| = 1, and r(1) = 0.

We take a complex number ζ such that ∆31(ζ) = ζ − 1 + ζ−1 = 0. Then, we
have ∆k(ζ) = ±(∆31(ζ)m(ζ)− r(ζ)r(ζ−1)) = ±(ζ)r(ζ−1). Let r(t) = tp(c0 + c1t+
· · · + cn−2t

n−2 + cn−1t
n−1 + cnt

n) for some integers c0, c1, . . . , cn. Then, we have
r(ζ) = ζp(c0+c1ζ+ · · ·+cn−2ζ

n−2+cn−1ζ
n−1+cnζ

n) = ζp(c0+c1ζ+ · · ·+(cn−2−
cn)ζ

n−2 + (cn−1 + cn)ζ
n−1) = · · · = ζp(a− bζ) for some integers a, b.

Therefore, we have ∆k(ζ) = ±r(ζ)r(ζ−1) = ±(a2 − ab+ b2).

In the case of the figure-eight knot, we take a complex number ζ such that
∆41(ζ) = ζ−3+ ζ−1 = 0. Let r(t) = tp(c0+ c1t+ · · ·+ cn−2t

n−2+ cn−1t
n−1+ cnt

n)
for some integers c0, c1, . . . , cn. Then, we have r(ζ) = ζp(c0+c1ζ+ · · ·+cn−2ζ

n−2+
cn−1ζ

n−1 + cnζ
n) = ζp(c0 + c1ζ + · · · + (cn−2 − cn)ζ

n−2 + (cn−1 + 3cn)ζ
n−1) =

· · · = ζp(a− bζ) for some integers a, b. Therefore, we have ∆k(ζ) = ±r(ζ)r(ζ−1) =
±(a2 − 3ab+ b2).
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3.2. Sufficiency part

First, we will see the degree trick that the following two lemmas are equivalent.

Lemma 6. Let f(t) be a Laurent polynomial satisfying the following three condi-
tions; (1) f(t−1) = f(t), (2) |f(1)| = 1, and (3) f(ζ) = ±(a2 − ab + b2) for some
integers a, b. Then, there exists a knot k which is transformed into the trefoil knot
by a single crossing change such that ∆k(t) = f(t).

Lemma 7. Let g(t) be a Laurent polynomial satisfying the following four condi-
tions; (1) g(t−1) = g(t), (2) |g(1)| = 1, (3) g(ζ) = ±(a2−ab+ b2) for some integers
a, b, and (4) g(t) = pt − (2p − g(1)) + pt−1. Then, there exists a knot k which is
transformed into the trefoil knot by a single crossing change such that ∆k(t) = g(t).

It is clear that Lemma 6 implies Lemma 7.

We suppose that Lemma 7 holds. Let f(t) be a Laurent polynomial satisfying
the following three conditions; (1) f(t−1) = f(t), (2) |f(1)| = 1, and (3) f(ζ) =
±(a2−ab+ b2) for some integers a, b. We take a Laurent polynomial g(t) satisfying
the following four conditions; (1) g(t−1) = g(t), (2) g(1) = f(1), (3) g(ζ) = f(ζ), and
(4) g(t) = pt− (2p−g(1))+pt−1. From Proposition 5, there exists a knot l which is
transformed into the trefoil knot by a single crossing change such that ∆l(t) = g(t).

Furthermore, ∆l(t) = ±det

(
∆31(t) r(t−1)
r(t) m(t)

)
= g(t) = pt− (2p− g(1)) + pt−1.

We take the Laurent polynomial D(t) = g(t)− f(t). Then, D(t−1) = g(t−1)−
f(t−1) = g(t) − f(t) = D(t). D(1) = g(1) − f(1) = 0. D(ζ) = g(ζ) − f(ζ) = 0.
Hence, we have D(t) = (t− 1)(t−1 − 1)∆31(t)d(t) for some Laurent polynomial d(t)
satisfying d(t−1) = d(t).

The matrix M(t) =

(
∆31(t) r(t−1)
r(t) m(t)∓ (t− 1)(t−1 − 1)d(t)

)
can be realized by

an Alexander matrix of a knot which is transformed into the trefoil knot by a single
crossing change from a surgical view.

±detM(t) = ±det

(
∆31(t) r(t−1)
r(t) m(t)∓ (t− 1)(t−1 − 1)d(t)

)
= ±(∆31(t)(m(t) ∓

(t− 1)(t−1 − 1)d(t))− r(t)r(t−1)) = g(t)−D(t) = f(t).

The degree trick is shown.

From now, we will give the proof of Lemma 7. It is sufficient to show the
following Lemma 8. (If g(1) = −1, consider −g(t).) That is the second trick.

Lemma 8. Let g(t) be a Laurent polynomial satisfying the following four conditions;
(1) g(t−1) = g(t), (2) g(1) = 1, (3) g(ζ) = ε(a2−ab+ b2) for some integers a, b and
ε = ±1, and (4) g(t) = pt − (2p − 1) + pt−1. Then, there exists a knot k which is
transformed into the trefoil knot by a single crossing change such that ∆k(t) = f(t).

Proof of Lemma 8. We remark that g(ζ) = pζ − (2p− 1) + pζ−1 = p− (2p− 1) =
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−p+ 1 = ε(a2 − ab+ b2) implies p = 1− ε(a2 − ab+ b2).

We consider the matrix M(t) =

(
∆31(t) (t−1 − 1)(at−1 − b)

(t− 1)(at− b) abt− (2ab+ ε) + abt−1

)
,

which satisfies the conditions (1), (2), and (3) in Proposition 5. Hence, there exists a
knot k which is transformed into the trefoil knot 31 by a single crossing change such
that M(t) is an Alexander matrix of k. We calculate the Alexander polynomial:
−εdetM(t) = −ε(∆31(t)(abt−(2ab+ε)+abt−1)−(t−1)(t−1−1)(at−b)(at−1−b)) =
−ε((−ε+a2+b2−ab)t+(ε−2a2−2b2+2ab)+(−ε+a2+b2−ab)tt−1) = (1−ε(a2+
b2−ab))t+(−1+2ε(a2+b2−ab)+(1−ε(a2+b2−ab))t−1 = pt−(2p−1)+pt−1 = g(t).
The proof of Lemma 8 is completed. 2

In the case of the figure-eight knot, we use ∆41(t) = t − 3 + t−1 instead of
∆31(t) = t− 1 + t−1.

The proofs of Theorems 1 and 3 are completed.

4. Quick reviews for remarks

By a standard argument in Number Theory, we can give the proofs of Remarks
2 and 4. Here, we give quick reviews of the proofs for topologists who do not know
enough much Number Theory as in compliance with the referee’s suggestion.

It is sufficient to show the following propositions.

Proposition 9. An integer N satisfies the condition N = ±(a2−ab+ b2) for some
integers a, b ∈ Z if and only if N satisfies the condition N = 0,±1, or ±pe11 · · · penn
where pi’s are prime numbers, ei’s are even integers for pi = 2, 3k+2, and ei’s are
arbitrary integers for pi = 3, 3k + 1.

Proposition 10. An integer N satisfies the condition N = ±(a2−3ab+b2) for some
integers a, b ∈ Z if and only if N satisfies the condition N = 0,±1, or ±pe11 · · · penn
where pi’s are prime numbers, ei’s are even integers for pi = 2, 3, 5k ± 2, and ei’s
are arbitrary integers for pi = 5, 5k ± 1.

We can find an exact proof of Proposition 9 in a standard textbook of Number
Theory by Takagi [9] (and also Ireland-Rosen [1]), in which we can also find a
suggestive proof of Proposition 10.

4.1. Sufficiency part for Proposition 9

Let J be the set of integers N = a2 − ab+ b2 for some integers a, b ∈ Z.

Claim 11. Let N1, N2 be integers in J . Then, the product N1N2 is also in J .

Put N1 = a2 − ab + b2 and N2 = c2 − cd + d2. Then, we have N1N2 =
(a2 − ab+ b2)(c2 − cd+ d2) = (ac− bd)2 − (ac− bd)(ad+ bc− bd) + (ad+ bc− bd)2.

We take a complex number ω such that ω2 + ω + 1 = 0. Let Z[ω] be the ring
{a+ bω|a, b ∈ Z}.

Claim 12. Let p be a prime number. Then, we have one of the following: (1)
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p = a2 − ab+ b2 for some integers a, b ∈ Z, or (2) p is prime in Z[ω].

We remark that Z[ω] is a Unique Factorization Domain (say U.F.D.), and we
consider the unique prime factorization in Z[ω]: p = (a1 + b1ω)(a2 + b2ω) · · · (ak +
bkω) for some integers a1, b1, . . . , ak, bk. Let c + dω = (a2 + b2ω) · · · (ak + bkω).
Then, p = (a1+ b1ω)(c+dω) = (a1c− b1d)+(a1d+ b1c− b1d)ω. a1d+ b1c− b1d = 0
implies (a1− b1)d = −b1c and c+dω = m((a1− b1)− b1ω) = m(a1+ b1ω

2) for some
integer m. Then, we have p = m(a1 + b1ω)(a1 + b1ω

2) = m(a21 − a1b1 + b21). Since
p is prime in Z, we have m = 1 or a21 − a1b1 + b21 = 1. The condition m = 1 implies
that p = a2 − ab+ b2 for some integers a, b ∈ Z. The condition a21 − a1b1 + b21 = 1
implies that p is prime in Z[ω].

Claim 13. Let p be a prime number such that p ≡ 1 (mod 3). Then, p = a2−ab+b2

for some integers a, b ∈ Z.

This clam is the most difficult part in the review. We use the Legendre symbol
in the standard argument to give the proof of Claim 13, which is rather long. Here,
we give an alternate proof without it as follows:

Let p be a prime number such that p ≡ 1 (mod 3). The group F×
p is a cyclic

group of order p − 1 = 3k. There exists an element a of order 3 in F×
p . Then, we

have a3 = 1 and a3 − 1 = (a− 1)(a2 + a + 1) = 0. Since a− 1 ̸= 0 in Fp, we have
a2 + a+ 1 = 0 in Fp. Hence, we have a2 + a+ 1 = pk in Z for some integer k. We
consider the prime factorization of (a− ω)(a− ω2) = a2 + a+ 1 = pk ∈ Z[ω]. If p
was prime in Z[ω], then p would be a divisor of a−ω or a−ω2. It contradicts that
a− ω

p
,
a− ω2

p
̸∈ Z[ω]. Therefore, p is not prime in Z[ω]. By Claim 12, there exist

some integers a, b ∈ Z such that p = a2 − ab+ b2.

Claim 14. Let N be an integer such that N = 0, 1, or pe11 · · · penn where pi’s are
prime numbers, ei’s are even integers for pi = 2, 3k + 2, and ei’s are arbitrary
integers for pi = 3, 3k + 1, then N = a2 − ab+ b2 for some integers a, b ∈ Z.

If N = 0, then N = a2 − ab+ b2 for a = b = 0. If N = 1, then N = a2 − ab+ b2

for a = b = 1. If N = 3, then N = a2 − ab + b2 for a = 1, b = −1. For an
integer p such that p = 2, 3k + 2, p2 = a2 − ab + b2 for a = p, b = 0. For a prime
integer p such that p = 3k + 1, p = a2 − ab + b2 for some integers a, b ∈ Z by
Claim 13. If N = pe11 · · · penn where pi’s are prime numbers, ei’s are even integers for
pi = 2, 3k+2, and ei’s are arbitrary integers for pi = 3, 3k+1, then N = a2−ab+b2

for some integers a, b ∈ Z by Claim 11. The sufficiency part is completed.

4.2. Necessity part for Proposition 9

Since a2 − ab+ b2 = (a− 2b)2 + 3ab ≡ 0, 1 (mod 3), we have the following:

Claim 15. Let N be an integer in J . Then, we have N ≡ 0, 1 (mod 3).

Since Z is a U.F.D., we consider the unique prime factorization in Z: a2 − ab+
b2 = pe11 · · · penn where pi’s are mutually distinct prime numbers and ei’s are integers.
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If pi be an integer such that pi ≡ 2 (mod 3), there do not exist integers a, b
such that pi = a2 − ab + b2 by Claim 15. By Claim 12, pi is prime in Z[ω] and ei
should be even. The necessity part is complete.

4.3. Review for Proposition 10

If c = a− b, d = −b, then c2 + cd− d2 = (a− b)2 − (a− b)b− b2 = a2 − 3ab+ b2.
We have the following:

Claim 16. {N |N = a2 − 3ab+ b2} = {N |N = a2 + ab− b2}.

It is sufficient to show Proposition 17 by Claim 16.

Proposition 17. An integer N satisfies the condition N = ±(a2+ab−b2) for some
integers a, b ∈ Z if and only if N satisfies the condition N = 0,±1, or ±pe11 · · · penn
where pi’s are prime numbers, ei’s are even integers for pi = 2, 3, 5k ± 2, and ei’s
are arbitrary integers for pi = 5, 5k ± 1.

The quick review for Proposition 17 is almost parallel to the above except for
Claim 13 and we omit it here.
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