DOI QR코드

DOI QR Code

On Minimal Unknotting Crossing Data for Closed Toric Braids

  • Siwach, Vikash (Department of Mathematics, Indian Institute of Technology Ropar) ;
  • Prabhakar, Madeti (Department of Mathematics, Indian Institute of Technology Ropar)
  • Received : 2015.05.05
  • Accepted : 2016.10.21
  • Published : 2017.06.23

Abstract

Unknotting numbers for torus knots and links are well known. In this paper, we present a new approach to determine the position of unknotting number crossing changes in a toric braid such that the closure of the resultant braid is equivalent to the trivial knot or link. Further we give unknotting numbers of more than 600 knots.

Keywords

References

  1. S. Bleiler, A note on unknotting number, Math. Proc. Cambridge Philos. Soc., 96(1984), 469-471. https://doi.org/10.1017/S0305004100062381
  2. J. Hoste, M. Thistlethwaite, and J. Weeks, The first 1,701,936 knots, Math. Intelligencer, 20(1998), 33-48. https://doi.org/10.1007/BF03025227
  3. J. Hoste, M. Thistlethwaite, and J. Weeks, Knotscape, 1999.
  4. S. Jablan and R. Sazdanovic. Linknot-knot theory by computer, Series on Knots and Everything 21, World Scientific, Singapore.
  5. P. Kronheimer and T. Mrowka, Gauge theory for embedded surfaces, I, Topology, 32(1993), 773-826. https://doi.org/10.1016/0040-9383(93)90051-V
  6. P. Kronheimer and T. Mrowka, Gauge theory for embedded surfaces, II, Topology, 34(1995), 37-97. https://doi.org/10.1016/0040-9383(94)E0003-3
  7. Y. Nakanishi, Unknotting numbers and knot diagrams with the minimum crossings, Math. Sem. Notes Kobe Univ., 11(1983), 257-258.
  8. V. Siwach and P. Madeti, A sharp upper bound for region unknotting number of torus knots, J. Knot Theory Ramifications, 22(5)(2013), 1350019, 21 pages. https://doi.org/10.1142/S0218216513500193
  9. V. Siwach and P. Madeti, An unknotting sequence for torus knots, Topology Appl., 196(B)(2015) 668-674. https://doi.org/10.1016/j.topol.2015.05.065