
KYUNGPOOK Math. J. 47(2007), 329-334

Local Moves and Gordian Complexes, II

Yasutaka Nakanishi

Department of Mathematics, Faculty of Science, Kobe University, Rokko, Nada-ku,

Kobe 657-8501, Japan

e-mail : nakanisi@math.kobe-u.ac.jp

Abstract. By the works of Levine [2] and Rolfsen [5], [6], it is known that a local move

called a crossing-change is strongly related to the Alexander invariant. In this note, we

will consider to what degree the relationship is strong. Let K be a knot, and K
× the set

of knots obtained from a knot K by a single crossing-change. Let MK be the Alexander

invariant of a knot K, and MK the set of the Alexander invariants {MK}K∈K for a set of

knots K. Our main result is the following: If both K1 and K2 are knots with unknotting

number one, then MK1 = MK2 implies MK
×

1
= MK

×

2
. On the other hand, there exists

a pair of knots K1 and K2 such that MK1 = MK2 and MK
×

1
6= MK

×

2
. In other words,

the Gordian complex is not homogeneous with respect to Alexander invariants.

1. Introduction

A knot K is a simple closed oriented curve in the three dimensional sphere S3.
Two knots are said to have the same knot type if there is an orientation preserving
homeomorphism from S3 to itself, which maps one knot into the other, preserving
the orientation of knots. An Alexander matrix MK(t) of K is a presentation matrix

of the first integral homology group H1(X̃∞) as a Λ-module, where X̃∞ means the
infinite cyclic covering space of the exterior X of K in S3 and Λ means the integral
group-ring ZH1(X); we can see that ZH1(X) = Λ is the Laurent polynomial ring
Z[t, t−1] where t is always taken to be represented by the meridian of K. The

Λ-module H1(X̃∞) is said to be the Alexander invariant (or Alexander module).
An Alexander polynomial ∆K(t) of K is a generator of the order ideal of MK(t).
The Alexander invariant is a stronger invariant than the Alexander polynomial;
for example, the three knots 31#31, 820, 10140 have the same Alexander polynomial
∆(t) = (t2 − t + 1)2, and those Alexander invariants are distinct. In this note, we
will give an approach to obtain more information by using Alexander invariants; for
example, the two knots 51, 10132 have the same Alexander invariant, and they are
distinguished by using Alexander invariants of their neighbourhood.

In 1937, H. Wendt [7] introduced a notion of operation for knots. We usually
call the operation an unknotting operation (or briefly, a crossing-change), which
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Figure 1:

is defined to be a local move between two knot diagrams K1 and K2 which are
identical except near one point as in Fig. 1. Furthermore, we consider its spatial
realization as follows: For two knots k1 and k2 represented by K1 and K2, k1 and
k2 are said to be transformed into each other by a single crossing-change. If a knot
K is transformed to a trivial knot by a single crossing-change, K is a knot with
unknotting number one. M. Hirasawa and Y. Uchida [1] introduced the notion of
Gordian complex by the crossing-change as follows: We consider a knot as a 0-
simplex (or vertex). For a positive integer m, we consider a set of m+1 knots, each
pair of which can be transformed into each other by a single crossing-change, as
an m-simplex. We regard the set of knots as a simplicial complex, which is called
the Gordian complex. They show that every 1-simplex of the Gordian complex is
a face of arbitrary large dimensional simplex. In the previous note [4], the author
and Y. Ohyama show that the Gordian complex is not homogeneous with respect to
Alexander (Conway) polynomials, by using the difference of Alexander invariants.

The following facts are an observation on a relationship between crossing-
changes and Alexander invariants. In other words, the Gordian complex is not
homogeneous with respect to Alexander invariants.

Theorem 1. If both K1 and K2 are knots with unknotting number one and with

the same Alexander invariant, then MK×

1
= MK×

2
.

Theorem 2. There exists a pair of knots K1 and K2 such that MK1 = MK2 and

MK×

1
6= MK×

2
.

2. Surgical description

It is well-known that any knot can be transformed into a trivial knot by crossing-
changes at suitable crossing points. Every crossing-change is obtained by a ±1
surgery along a small trivial knot around the crossing point with linking number 0.
J. Levine [2] and D. Rolfsen [5], [6] introduced a surgery description of a knot and
a surgical view of Alexander matrix and Alexander polynomial as follows:

Proposition 3. Let K be a knot, K0 a trivial knot. Then, there exist n disjoint

solid tori T1, · · · , Tn in S3 −K0 and a homeomorphism φ from S3 − ◦T1 ∪ · · · ∪ ◦Tn

to itself such that

(1) φ(K0) = K,

(2) T1 ∪ · · · ∪ Tn is a trivial link,
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(3) lk(Ti, K0) = lk(Ti, K) = 0 for each i, and

(4) φ(∂Ti) = ∂Ti and lk(µ′

i, Ti) = 1 where µi ⊂ ∂Ti is a meridian of Ti and

µ′

i = φ−1(µi).

From a surgery description, we have a surgical view of Alexander matrix of the
knot as follows:

Proposition 4. Let K be a knot. Then, K has an Alexander matrix MK(t) =
(mij(t)) of the following form:

(1) mij(t) = mji(t
−1), and

(2) |mij(1)| = δij ,

where the Kronecker’s delta δij = 1 (if i = j), 0 (if i 6= j).
Here, the size of MK(t) is given by the number n in Proposition 3.

3. Proof of Theorem 1

Let ∆K1
(t) = ∆K2

(t) = ∆(t), and k ∈ K×

1
. Since K1 is a knot with unknotting

number one, a surgical description of k is given by a trivial knot and a pair of solid
tori. Then, from a surgical viewpoint, k has an Alexander matrix of the following
form: (

∆(t) r(t−1)
r(t) m(t)

)

As r(1) = 0 and |m(1)| = 1, m(t−1) = m(t), we rewrite

r(t) = ±tr(r1(1 − t) + r2(1 − t)2 + · · · + rn(1 − t)n), and

m(t) = 1 + (a2 + 1)

(√
t − 1√

t

)2

+

· · · + (a2n−2 + 1)

(√
t − 1√

t

)2n−2

+ a2n

(√
t − 1√

t

)2n

.

Since K2 is a knot with unknotting number one, a surgical description of K2

is given by a trivial knot and a single solid torus as in the left of Fig. 2, where
the solid torus is illustrated by a thick line. We transform this part of K2 into the
right of Fig. 2 by a single crossing-change, and we obtain the new knot k∗ ∈ K×

2
.

Here, r1, r2, · · · , rn mean the numbers of left-handed linkings of each part of solid
torus and each parallel parts of the knot, and a2, a4, · · · , a2n mean the numbers of
left-handed full-twists of each parallel parts of the knot.

Then, from a surgical viewpoint, k∗ has an Alexander matrix of the following
form: (

∆(t) r(t−1)
r(t) m(t)

)
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Figure 2:

Figure 3:

We see this fact in the case r1 = 2, r2 = 1, a2 = a4 = 1 through surgical
description as follows: We recall that k∗ is obtained from K2 by a single crossing-
change. A crossing-change is realized by a ±1 surgery along a small knot around
the crossing point with linking number 0. In the center of Fig. 3, the small knot
is illustrated by a thin line. By surgery along the small knot and ambient isotopy,
we obtain the right of Fig. 3 from the center. From this surgical description of
k∗, a part of the infinite cyclic covering space of the exterior of k∗ can be seen as
illustrated in Fig. 4. By reading the linking numbers between lifts of surgery knots,
we can calculate r(t) and m(t).

Therefore, we have MK×

1
⊂ MK×

2
, and vice versa. The proof is complete.

Remark. The parallel argument shows the following: if two knots K1, K2 have the

Figure 4:
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Figure 5: 51 and 10132

same Alexander matrix from a surgical viewpoint, then MK×

1
= MK×

2
.

4. Proof of Theorem 2

We consider a pair of knots, 51 and 10132, which have the same Alexander
invariant (t4 − t3 + t2 − t + 1). It is easily seen that 51 is transformed to a trefoil
knot by a single crossing-change. So we have (t2 − t + 1) ∈ M5×

1
.

We see that u(10132) = 1. Therefore, from a surgical viewpoint, a knot obtained
from 10132 by a single crossing-change has an Alexander matrix of the following
form: (

±(t2 − t + 1 − t−1 + t−2) r(t−1)
r(t) m(t)

)

Here we would assume that the determinant is ±(t− 1 + t−1). Put t = −1, and
and we have the determinant

∣∣∣∣
±5 r(−1)

r(−1) m(−1)

∣∣∣∣ = ±3

From the equation modulo 5, we have r(−1)2 ≡ ±3 mod 5. It is a contradic-
tion. Hence, we have (t2 − t + 1) 6∈ M10×

132
. Hence, we have M5×

1
6= M10×

132
. The

proof is complete.

Remark. In the proof, we can see that the pair of knots 51 and 10132 have the same
Alexander invariant, and that they have the distinct surgical views of Alexander
matrices.

5. Addendum

The following proposition is observed at Ikarashi. Here, ∆K× means the set of
the Alexander polynomials {∆k(t)}k∈K× .

Proposition 5. Let K be a knot with u(K) = 1 and ∆K(t) = t2 − t + 1. Then,

t2 − 3t + 1 6∈ ∆K×.

Proof. If there would exist a knot k such that dG(K, k) = 1 and ∆k(t) = t−3+ t−1,
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then, from a surgical viewpoint, k has an Alexander matrix of the following form:

(
±(t − 1 + t−1) r(t−1)

r(t) m(t)

)

And the determinant should be ±(t − 3 + t−1). We have the determinant modulo
t2 − t + 1,

r(t−1)r(t) ≡ ±2 mod (t2 − t + 1).

We consider r(t) ≡ at − b mod (t2 − t + 1), then r(t−1)r(t) ≡ a2 + b2 − ab
mod (t2 − t + 1). For a pair of integers a, b, the right hand side a2 + b2 − ab is
a multiple of 4 or an odd number, and so a2 + b2 − ab 6≡ ±2 mod (t2 − t + 1). It is
a contradiction. The proof is complete. �

Remark. In the previous note [3], we see: Let K be a knot with u(K) = 1 and
∆K(t) = t2 − 3t + 1. Then, t2 − t + 1 6∈ ∆K×. The parallel proof will also show
this observation. There are still open that: Are there a pair of knots K1, K2 such
that dG(K1, K2) = 1 and ∆K1

(t) = t2 − t + 1, ∆K2
(t) = t2 − 3t + 1?
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