• Title/Summary/Keyword: Kirchhoff type

Search Result 46, Processing Time 0.022 seconds

EXISTENCE OF INFINITELY MANY SOLUTIONS FOR A CLASS OF NONLOCAL PROBLEMS WITH DIRICHLET BOUNDARY CONDITION

  • Chaharlang, Moloud Makvand;Razani, Abdolrahman
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.155-167
    • /
    • 2019
  • In this article we are concerned with some non-local problems of Kirchhoff type with Dirichlet boundary condition in Orlicz-Sobolev spaces. A result of the existence of infinitely many solutions is established using variational methods and Ricceri's critical points principle modified by Bonanno.

ON A CLASS OF NONCOOPERATIVE FOURTH-ORDER ELLIPTIC SYSTEMS WITH NONLOCAL TERMS AND CRITICAL GROWTH

  • Chung, Nguyen Thanh
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1419-1439
    • /
    • 2019
  • In this paper, we consider a class of noncooperative fourth-order elliptic systems involving nonlocal terms and critical growth in a bounded domain. With the help of Limit Index Theory due to Li [32] combined with the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity. Our results significantly complement and improve some recent results on the existence of solutions for fourth-order elliptic equations and Kirchhoff type problems with critical growth.

POSITIVE SOLUTIONS TO p-KIRCHHOFF-TYPE ELLIPTIC EQUATION WITH GENERAL SUBCRITICAL GROWTH

  • Zhang, Huixing;Zhang, Ran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.1023-1036
    • /
    • 2017
  • In this paper, we study the existence of positive solutions to the p-Kirchhoff elliptic equation involving general subcritical growth $(a+{\lambda}{\int_{\mathbb{R}^N}{\mid}{\nabla}u{\mid}^pdx+{\lambda}b{\int_{\mathbb{R}^N}{\mid}u{\mid}^pdx)(-{\Delta}_pu+b{\mid}u{\mid}^{p-2}u)=h(u)$, in ${\mathbb{R}}^N$, where a, b > 0, ${\lambda}$ is a parameter and the nonlinearity h(s) satisfies the weaker conditions than the ones in our known literature. We also consider the asymptotics of solutions with respect to the parameter ${\lambda}$.

BIHARMONIC-KIRCHHOFF TYPE EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT WITH SINGULAR TERM

  • Tahri, Kamel;Yazid, Fares
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.247-256
    • /
    • 2021
  • Using variational methods, we show the existence of a unique weak solution of the following singular biharmonic problems of Kirchhoff type involving critical Sobolev exponent: $$(\mathcal{P}_{\lambda})\;\{\begin{array}{lll}{\Delta}^2u-(a{\int}_{\Omega}{\mid}{\nabla}u{\mid}^2dx+b){\Delta}u+cu=f(x){\mid}u{\mid}^{-{\gamma}}-{\lambda}{\mid}u{\mid}^{p-2}u&&\text{ in }{\Omega},\\{\Delta}u=u=0&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω is a smooth bounded domain of ℝn (n ≥ 5), ∆2 is the biharmonic operator, and ∇u denotes the spatial gradient of u and 0 < γ < 1, λ > 0, 0 < p ≤ 2# and a, b, c are three positive constants with a + b > 0 and f belongs to a given Lebesgue space.

CFD/Kirchhoff Integral Method for the Prediction of the Air-Pumping Noise by a Car Tyre (CFD/Kirchhoff 적분 방법을 이용한 자동차 타이어의 Air-Pumping 소음 예측)

  • Kim, Sung-Tae;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.916-919
    • /
    • 2004
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory. This paper describes an approach to predict the air-pumping noise of a car ave with CFD/Kirchhoff integral method. The type groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired. And these unsteady flow data are used as a air-pumping source in the next Cm calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time, which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of using Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of modeled car tyre and the predicted results are qualitatively compared with the experimental data.

  • PDF

DMD based modal analysis and prediction of Kirchhoff-Love plate (DMD기반 Kirchhoff-Love 판의 모드 분석과 수치해 예측)

  • Shin, Seong-Yoon;Jo, Gwanghyun;Bae, Seok-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1586-1591
    • /
    • 2022
  • Kirchhoff-Love plate (KLP) equation is a well established theory for a description of a deformation of a thin plate under certain outer source. Meanwhile, analysis of a vibrating plate in a frequency domain is important in terms of obtaining the main frequency/eigenfunctions and predicting the vibration of plate. Among various modal analysis methods, dynamic mode decomposition (DMD) is one of the efficient data-driven methods. In this work, we carry out DMD based modal analysis for KLP where thin plate is under effects of sine-type outer force. We first construct discrete time series of KLP solutions based on a finite difference method (FDM). Over 720,000 number of FDM-generated solutions, we select only 500 number of solutions for the DMD implementation. We report the resulting DMD-modes for KLP. Also, we show how DMD can be used to predict KLP solutions in an efficient way.

Bending of an isotropic non-classical thin rectangular plate

  • Fadodun, Odunayo O.;Akinola, Adegbola P.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.437-440
    • /
    • 2017
  • This study investigates the bending of an isotropic thin rectangular plate in finite deformation. Employing hyperelastic material of John's type, a non-classical model which generalizes the famous Kirchhoff's plate equation is obtained. Exact solution for deflection of the plate under sinusoidal loads is obtained. Finally, it is shown that the non-classical plate under consideration can be used as a replacement for Kirchhoff's plate on an elastic foundation.

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

EXISTENCE OF SOLUTIONS FOR FRACTIONAL p&q-KIRCHHOFF SYSTEM IN UNBOUNDED DOMAIN

  • Bao, Jinfeng;Chen, Caisheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1441-1462
    • /
    • 2018
  • In this paper, we investigate the fractional p&q-Kirchhoff type system $$\{M_1([u]^p_{s,p})(-{\Delta})^s_pu+V_1(x){\mid}u{\mid}^{p-2}u\\{\hfill{10}}={\ell}k^{-1}F_u(x,\;u,\;v)+{\lambda}{\alpha}(x){\mid}u{\mid}^{m-2}u,\;x{\in}{\Omega}\\M_2([u]^q_{s,q})(-{\Delta})^s_qv+V_2(x){\mid}v{\mid}^{q-2}v\\{\hfill{10}}={\ell}k^{-1}F_v(x,u,v)+{\mu}{\alpha}(x){\mid}v{\mid}^{m-2}v,\;x{\in}{\Omega},\\u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}{\subset}{\mathbb{R}}^N$ is an unbounded domain with smooth boundary ${\partial}{\Omega}$, and $0<s<1<p{\leq}q$ and sq < N, ${\lambda},{\mu}>0$, $1<m{\leq}k<p^*_s$, ${\ell}{\in}R$, while $[u]^t_{s,t}$ denotes the Gagliardo semi-norm given in (1.2) below. $V_1(x)$, $V_2(x)$, $a(x):{\mathbb{R}}^N{\rightarrow}(0,\;{\infty})$ are three positive weights, $M_1$, $M_2$ are continuous and positive functions in ${\mathbb{R}}^+$. Using variational methods, we prove existence of infinitely many high-energy solutions for the above system.

Determination of the Vlasov foundation parameters -quadratic variation of elasticity modulus- using FE analysis

  • Celik, Mecit;Omurtag, Mehmet H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.619-637
    • /
    • 2005
  • The objective of this research was to determine the Vlasov soil parameters for quadratically varying elasticity modulus $E_s$(z) of the compressible soil continuum and discuss the interaction affect between two close plates. Interaction problem carried on for uniformly distributed load carrying plates. Plate region was simulated by Kirchhoff plate theory based (mixed or displacement type) 2D elements and the foundation continuum was simulated by displacement type 2D elements. At the contact region, plate and foundation elements were geometrically coupled with each other. In this study the necessary formulas for the Vlasov parameters were derived when Young's modulus of the soil continuum was varying as a quadratic function of z-coordinate through the depth of the foundation. In the examples, first the elements and the iterative FE algorithm was verified and later the results of quadratic variation of $E_s$(z) were compared with the previous examples in order to discuss the general behavior. As a final example two plates close to each other resting on elastic foundation were handled to see their interaction influences on the Vlasov foundation parameters. Original examples were solved using both mixed and displacement type plate elements in order to confirm the results.