DOI QR코드

DOI QR Code

Determination of the Vlasov foundation parameters -quadratic variation of elasticity modulus- using FE analysis

  • Celik, Mecit (Istanbul Technical University, Faculty of Civil Engineering) ;
  • Omurtag, Mehmet H. (Istanbul Technical University, Faculty of Civil Engineering)
  • Received : 2004.02.16
  • Accepted : 2005.02.14
  • Published : 2005.04.20

Abstract

The objective of this research was to determine the Vlasov soil parameters for quadratically varying elasticity modulus $E_s$(z) of the compressible soil continuum and discuss the interaction affect between two close plates. Interaction problem carried on for uniformly distributed load carrying plates. Plate region was simulated by Kirchhoff plate theory based (mixed or displacement type) 2D elements and the foundation continuum was simulated by displacement type 2D elements. At the contact region, plate and foundation elements were geometrically coupled with each other. In this study the necessary formulas for the Vlasov parameters were derived when Young's modulus of the soil continuum was varying as a quadratic function of z-coordinate through the depth of the foundation. In the examples, first the elements and the iterative FE algorithm was verified and later the results of quadratic variation of $E_s$(z) were compared with the previous examples in order to discuss the general behavior. As a final example two plates close to each other resting on elastic foundation were handled to see their interaction influences on the Vlasov foundation parameters. Original examples were solved using both mixed and displacement type plate elements in order to confirm the results.

Keywords

References

  1. Akoz, A.Y., Omurtag, M.H. and Dogruoglu, A.N. (1991), 'The mixed finite element formulation for three dimensional bars', Int. J. Solids Struct., 28, 225-234 https://doi.org/10.1016/0020-7683(91)90207-V
  2. Aydogan, M., Kimence, B. and Erguven, M.E. (1995), 'Container structures on a Vlasov foundation with variable soil characteristics', Comput. Struct., 56(1), 133-139 https://doi.org/10.1016/0045-7949(94)00535-B
  3. Biot, M.A. (1937), 'Bending of an infinite beam on an elastic foundation', J. Appl. Mech. Trans., ASME, 59, A1-A7
  4. Bowles, J.E. (1988), Foundation Analysis and Design, McGraw Hill Book Company, 4th Ed.
  5. Buczkowski, R. and Torbacki, W. (2001), 'Finite element modelling of thick plates on two-parametric elastic foundation', Int. J. Numer. Anal. Meth. Geomech., 25, 1409-1427 https://doi.org/10.1002/nag.187
  6. Celik, M. and Saygun, A. (1999), 'A method for the analysis of plates on a two parameter foundation', Int. J. Solids Struct., 36, 2891-2915 https://doi.org/10.1016/S0020-7683(98)00135-8
  7. Cheung, M.S. (1978), 'A simplified finite element solution for the plates on elastic foundation', Compt. Struct., 8, 139-145 https://doi.org/10.1016/0045-7949(78)90170-0
  8. Daloglu, A.T. (1992), 'A consistent Vlasov model for analysis of plates on elastic foundations using the finite element method', PhD Dissertation, Texas Tech University
  9. Dogruoglu, A.N. and Omurtag, M.H. (2000), 'Stability analysis of composite-plate foundation interaction by mixed FEM', J. Engng. Mech., ASCE, 126(9), 928-936 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(928)
  10. Filonenko-Borodich, M.M. (1940), 'Some approximate theories of the elastic foundation, (in Russian)', Uchenyie Zapiski Moscovskogo Gosudarstuennogo Universiteta Mechanika, 46, 3-18
  11. Harr, M.E., Davidson, J.L., Ho, D.M., Pombo, L.E., Ramaswamy, S.V. and Rosner, J.C. (1969), 'Euler beams on a two-parameter foundation model', J. Soil Mech. and Found. Div., ASCE, 95(4), 933-948
  12. Hetenyi, M. (1946), Beams on Elastic Foundations, The University of Michigan Press, Ann Arbor
  13. Hetenyi, M. (1950), 'A general solution for the bending of beams on an elastic foundation of arbitrary continuity', J. Appl. Phys., 21, 55-58 https://doi.org/10.1063/1.1699420
  14. Jones, R. and Xenophontos, J. (1977), 'The Vlasov foundation model', Int. J. Mech. Sci., 19, 317-323 https://doi.org/10.1016/0020-7403(77)90084-4
  15. Kameswara-Rao, N.S.V. and Das, Y.C. (1971), 'Anandakrishman M. Variatonal approach to beams on elastic foundations', J. Engng. Mech., ASCE, 97(2), 255-273
  16. Kerr, A.D. (1964), 'Elastic and viscoelastic foundation models', J. Appl. Mech., 31, 491-498 https://doi.org/10.1115/1.3629667
  17. Kerr, A.D. (1965), 'A study of a new foundation model', Acta Mechanica, 1, 135-147 https://doi.org/10.1007/BF01174308
  18. Kneifati, M.C, (1985), 'Analysis of plates on a Kerr foundation model', J. Engng. Mech., ASCE, 111(11), 1325-1342 https://doi.org/10.1061/(ASCE)0733-9399(1985)111:11(1325)
  19. Nogami, T. and Lam, Y.C. (1987), 'Two parameter layer model for analysis of slab on elastic foundation', J. Engng. Mech., ASCE, 113(9), 1279-1291 https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1279)
  20. Oden, J.D. and Reddy, J.N. (1976), Variational Methods in Theoretical Mechanics, Springer, Berlin
  21. Omurtag, M.H., Ozutok, A, Akoz, AY and Ozcelikors, Y (1997), 'Free vibration analysis of kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gateaux differential', Int. J. Numer. Methods Eng., 40, 295-317 https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2<295::AID-NME66>3.0.CO;2-2
  22. Pasternak, P.L. (1954), On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow (in Russian)
  23. Saygun, A. and Celik, M. (2003), 'Analysis of circular plates on two-parameter elastic foundation', Struet. Eng. Mech., 15(2), 249-267 https://doi.org/10.12989/sem.2003.15.2.249
  24. Scott, R.F. (1981), Foundation Analysis, Prentice Hall, New Jersey
  25. Shi, X.P., Fwa, T.F. and Tan, S.A. (1993), 'Warping stresses in concrete pavements on Pasternak foundation', J. Transp. Engng., ASCE, 119(6), 905-913 https://doi.org/10.1061/(ASCE)0733-947X(1993)119:6(905)
  26. Straughan, W.T. (1990), 'Analysis of plates on elastic foundations', Dissertation, Texas Tech University
  27. Vallabhan, C.V.G. and Daloglu, A.T. (1999), 'Consistent FEM-Vlasov model for plates on layered soil', J. Struet. Engng., ASCE, 125(1), 108-113 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:1(108)
  28. Vallabhan, C.V.G. and Das, Y.C. (1988), 'Parametric study of beams on elastic foundations', J. Engng. Mech., ASCE, 114(12), 2072-2082 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2072)
  29. Vallabhan, C.V.G. and Das, Y.C. (1991), 'Analysis of circular tank foundation', J. Engng. Mech., ASCE, 117, 789-797 https://doi.org/10.1061/(ASCE)0733-9399(1991)117:4(789)
  30. Vallabhan, C.V.G., Straugham, W.T., and Das, Y.C. (1991), 'Refined model for analysis of plates on elastic foundation', J. Engng. Mech., ASCE, 117(12), 2830-2844 https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2830)
  31. Vlasov, V.Z. and Leontev, N.N. (1966), Beams, Plates and Shells on Elastic Foundations, (in Russian), Fizmatgiz, Moscow, USSR, 1960, Translated from Russian, Israel Program for Scientific Translation, Jarusalem, Israel
  32. Vesic, A.S. (1961), 'Bending of beams resting on isotropic elastic solid', J. Engrg. Mech., ASCE, 87(4), 35-51
  33. Winkler, E. (1867), Die Lehre von der Elasticitdt und Festigkeit, Prag, Dominicus

Cited by

  1. Effect of transverse shear strains on plates resting on elastic foundation using modified Vlasov model vol.46, pp.11, 2008, https://doi.org/10.1016/j.tws.2008.02.006
  2. Finite Element Analysis of Plate on Layered Tensionless Foundation vol.56, pp.3, 2010, https://doi.org/10.2478/v.10169-010-0014-9
  3. An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation vol.33, pp.5, 2009, https://doi.org/10.12989/sem.2009.33.5.573
  4. Alternative plate finite elements for the analysis of thick plates on elastic foundations vol.26, pp.1, 2005, https://doi.org/10.12989/sem.2007.26.1.069