Browse > Article
http://dx.doi.org/10.4134/CKMS.c200149

BIHARMONIC-KIRCHHOFF TYPE EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT WITH SINGULAR TERM  

Tahri, Kamel (High School of Management, Tlemcen Abou Bekr Belkaid University Faculty of Sciences Mathematics Department Rocade, Tlemcen Laboratory of Dynamic System and Applications)
Yazid, Fares (Department of Mathematics Laboratory of Pure and Applied Mathematics Amar Teledji University)
Publication Information
Communications of the Korean Mathematical Society / v.36, no.2, 2021 , pp. 247-256 More about this Journal
Abstract
Using variational methods, we show the existence of a unique weak solution of the following singular biharmonic problems of Kirchhoff type involving critical Sobolev exponent: $$(\mathcal{P}_{\lambda})\;\{\begin{array}{lll}{\Delta}^2u-(a{\int}_{\Omega}{\mid}{\nabla}u{\mid}^2dx+b){\Delta}u+cu=f(x){\mid}u{\mid}^{-{\gamma}}-{\lambda}{\mid}u{\mid}^{p-2}u&&\text{ in }{\Omega},\\{\Delta}u=u=0&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω is a smooth bounded domain of ℝn (n ≥ 5), ∆2 is the biharmonic operator, and ∇u denotes the spatial gradient of u and 0 < γ < 1, λ > 0, 0 < p ≤ 2# and a, b, c are three positive constants with a + b > 0 and f belongs to a given Lebesgue space.
Keywords
Variational methods; critical Sobolev exponent; biharmonic operator; Kirchhoff equations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Massar, E. M. Hssini, N. Tsouli, and M. Talbi, Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci. 8 (2014), no. 1, 33-51. https://doi.org/10.22436/jmcs.08.01.04   DOI
2 B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), no. 1-2, 401-410. https://doi.org/10.1016/S0377-0427(99)00269-1   DOI
3 B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46 (2010), no. 4, 543-549. https://doi.org/10.1007/s10898-009-9438-7   DOI
4 F. Wang and Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Probl. 2012 (2012), no. 6, 9 pp. https://doi.org/10.1186/1687-2770-2012-6   DOI
5 F. Wang, M. Avci, and Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type, J. Math. Anal. Appl. 409 (2014), no. 1, 140-146. https://doi.org/10.1016/j.jmaa.2013.07.003   DOI
6 G. Anello, A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem, J. Math. Anal. Appl. 373 (2011), no. 1, 248-251. https://doi.org/10.1016/j.jmaa.2010.07.019   DOI
7 C. O. Alves, F. J. S. A. Correa, and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), no. 1, 85-93. https://doi.org/10.1016/j.camwa.2005.01.008   DOI
8 M. Benalili and K. Tahri, Nonlinear elliptic fourth order equations existence and multiplicity results, NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 5, 539-556. https://doi.org/10.1007/s00030-011-0106-5   DOI
9 M. Ferrara, S. Khademloo, and S. Heidarkhani, Multiplicity results for perturbed fourthorder Kirchhoff type elliptic problems, Appl. Math. Comput. 234 (2014), 316-325. https://doi.org/10.1016/j.amc.2014.02.041   DOI
10 J. Garcia Azorero and I. Peral Alonso, On limits of solutions of elliptic problems with nearly critical exponent, Comm. Partial Differential Equations 17 (1992), no. 11-12, 2113-2126. https://doi.org/10.1080/03605309208820916   DOI
11 G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
12 J.-L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), 284-346, North-Holland Math. Stud., 30, North-Holland, Amsterdam, 1978.   DOI
13 Adimurthi and S. L. Yadava, An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem, Arch. Rational Mech. Anal. 127 (1994), no. 3, 219-229. https://doi.org/10.1007/BF00381159   DOI
14 S. Hu and L. Wang, Existence of nontrivial solutions for fourth-order asymptotically linear elliptic equations, Nonlinear Anal. 94 (2014), 120-132. https://doi.org/10.1016/j.na.2013.08.008   DOI
15 Y.-M. Wang, On fourth-order elliptic boundary value problems with nonmonotone nonlinear function, J. Math. Anal. Appl. 307 (2005), no. 1, 1-11. https://doi.org/10.1016/j.jmaa.2004.09.063   DOI