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POSITIVE SOLUTIONS TO p-KIRCHHOFF-TYPE ELLIPTIC

EQUATION WITH GENERAL SUBCRITICAL GROWTH

Huixing Zhang and Ran Zhang

Abstract. In this paper, we study the existence of positive solutions to
the p-Kirchhoff elliptic equation involving general subcritical growth

(a + λ

∫

RN

|∇u|pdx+ λb

∫

RN

|u|pdx)(−∆pu+ b|u|p−2u) = h(u), in R
N ,

where a, b > 0, λ is a parameter and the nonlinearity h(s) satisfies the
weaker conditions than the ones in our known literature. We also consider
the asymptotics of solutions with respect to the parameter λ.

1. Introduction

In this paper, we study the existence of positive solutions to p-Kirchhoff-type
problem







(a+ λ

∫

RN

|∇u|pdx+ λb

∫

RN

|u|pdx)(−∆pu+ b|u|p−2u) = h(u), in R
N ,

u(x) > 0, x ∈ R
N , u(x) ∈ W 1,p(RN ),

(1.1)

where a and b are positive constants, ∆pu = div(|∇u|p−2∇u), 1 < p < N ,
λ > 0 is a parameter and the general nonlinearity h(s) satisfies the following
conditions:

(h1) lim
s→+∞

h(s)

sp∗−1
= 0, with p∗ = pN

N−p ;

(h2) h ∈ C(R+,R+) with R+ = [0,+∞) and lim
s→0

h(s)
sp−1 = 0;

(h3) there exists ξ > 0 such that G(ξ) =
∫ ξ

0
g(s)ds > 0, where g(s) =

h(s)− ab|s|p−2s.
When p = 2 in the problem (1.1), the equation reduces to

(1.2) (a+ λ
∫

RN |∇u|2dx+ λb
∫

RN |u|2dx)(−∆u + bu) = h(u), x ∈ R
N .

The problem (1.2) on a bounded domain Ω ⊂ R
N is viewed as the Kirchhoff-

type problem which was proposed by Kirchhoff [15]. Kirchhoff-type problem
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is linked with a generalization of well-known D’Alembert’s wave equations for
free vibration of elastic strings, especially, considering the changes in length of
string produced by transverse oscillations. In addition, the problem (1.2) also
models several biological systems, where u describes a process which depends
on the average of itself (see [1]).

In recent years, Kirchhoff-type problems in R
N have been studied by many

authors, for example, see [13, 16, 17, 18] and references therein. In [16], Li et
al. utilized a cut-off functional to obtain the bounded Palais-Smale sequences
and proved the existence of a positive solution to the Kirchhoff-type problem
(1.2). Subsequently, in [17], Liu, Liao, and Tang also considered problem (1.2)
under the following conditions:

(g1) h ∈ C(R+,R+) with R+ = [0,+∞) and lim
s→0

h(s)
s = 0;

(g2) lim
s→+∞

h(s)
s2∗−1

= 0, with 2∗ = 2N
N−2 ;

(g3) there exists η > 0, such that H(η) =
∫ η

0
h(t)dt ≥ ab

2 η
2.

The conditions (g1)-(g3) are weaker than the ones in [16]. The result in [17]
covered the asymptotically linear case and superlinear case at infinity.

For the p-Kirchhoff-type problem (1.1), there have been some results. In [9],
Cheng and Dai proved the existence of positive solutions for p-Kirchhoff type
problem under the following assumptions:

(f1) there exists a C > 0 such that |h(t)| ≤ C(|t|p−1 + |t|q−1) for all t ≥ 0

and some q ∈ (p, p∗), here p∗ = pN
N−p ;

(f2) lim
t→0+

h(t)
tp−1 = 0;

(f3) lim
t→+∞

h(t)
tp−1 = +∞. For more results, we refer the reader to [2, 7, 6] and

the references therein.
In this paper, we are motivated by [9, 16, 17] and study the existence of

positive solutions to the problem (1.1). We will adopt the totally different ap-
proaches with the ones (namely, cut-off functional techniques and monotonicity
methods) in [9, 16, 17] to obtain bounded (PS) sequence. We believe that the
conditions (h1)-(h3) on the general nonlinearity h are almost optimal.

In order to state the results clearly, we introduce some Sobolev spaces. De-
note W 1,p(RN ) be the usual Sobolev space equipped with the norm

‖u‖ = (

∫

RN

(|∇u|p + b|u|p)dx) 1

p

and

D1,p(RN ) := {u ∈ Lp∗

(RN );∇u ∈ Lp(RN )}

endowed with the norm ‖u‖D1,p = (
∫

RN |∇u|pdx) 1

p . Let W 1,p
r (RN ) be the sub-

space of W 1,p(RN ) of radially symmetric functions. ‖u‖q = (
∫

RN |u|qdx) 1

q for

q ≥ 1 with u ∈ Lq(RN ). Ci denote positive constants, i = 1, 2, . . .. S and Cq

denote the best constants of Sobolev embeddings D1,p(RN ) →֒ Lp∗

(RN ) and
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W 1,p(RN ) →֒ Lq(RN ),

(1.3) S(
∫

RN |u|p∗

dx)p/p
∗ ≤

∫

RN |∇u|pdx for all u ∈ D1,p(RN ),

(1.4) Cq(
∫

RN |u|qdx)p/q ≤
∫

RN (|∇u|p + b|u|p)dx for all u ∈ W 1,p(RN ).

The following theorem is the first main result in the paper.

Theorem 1.1. Assume that (h1)-(h3) hold. There exists a constant λ0 > 0
such that, for any λ ∈ (0, λ0), the problem (1.1) admits at least one positive

solution uλ.

Remark 1.1. Theorem 1.1 covers the result in [17]. Indeed, when p = 2, Theo-
rem 1.1 is the main result in [17].

Remark 1.2. We easily prove that the conditions (f1) and (f3) in [9] are stronger
than the ones (h1) and (h3) respectively. In this sense, we improve the main
result in [9].

When λ = 0 in the equation (1.1), the problem reduces to

(1.5) −a∆pu+ ab|u|p−2u = h(u), x ∈ R
N .

Thw problem (1.5) is viewed as the limit problem of (1.1) when λ → 0. We
can now state the second main result in this paper.

Theorem 1.2. If the general nonlinearity h satisfies (h1)-(h3), then, as λ → 0,
uλ converges to u in W 1,p

r (RN ), where u is a ground state solution to the

problem (1.5).

Remark 1.3. In order to prove the existence of a ground state solution for the
problem (1.5), the assumptions (h1), (h3) and the additional condition

(h
′

2) there exists some q ∈ (p− 1, p∗ − 1) such that

lim
t→∞

sup
h(t)

tq
< ∞

were already used by Berestycki and Lions [3], for p = 2, and by J. M. do Ó
and E. Medeiros [12], for the 1 < p ≤ N case. Obviously, the condition (h2) in

this paper is weaker than the one (h
′

2). In this sense, we improve the results in
[3, 12].

The rest of the paper is organised as follows. In Section 2, we prove that
the limit problem (1.5) has at least a ground state solution. In Section 3, we
will find a solution in some neighborhood of the solutions to the limit problem
(1.5). Indeed, we view the problem (1.1) as the perturbed problem of (1.5) if λ
is sufficiently small. Because of the lack of Ambrosetti-Rabinowitz condition,
we use a local deformation approach from Byeon and Jeanjean [4] to obtain a
bounded (PS) sequence. In addition, due to the appearance of nonlocal terms
∫

RN |∇u|pdx and
∫

RN |u|pdx, we make a crucial modification on the min-max
value which is defined by Cλ, where all paths are requested to be uniformly
bounded with respect to λ. Finally, we give the proofs of the main results.
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2. Existence of ground state solutions to limit problem

In this section, we prove that the problem (1.5) has at least one ground state
solution. Since we consider the positive solutions, we can assume that h(s) = 0
for s ≤ 0. Meanwhile, as the problems (1.1) and (1.5) are autonomous, we can
work in W 1,p

r (RN ) (see Theorem 1.28 in [20]). Define the energy functionals of
problems (1.1) and (1.5) respectively by

Iλ(u) =
a

p
‖u‖p + λ

2p
‖u‖2p −

∫

RN

H(u)dx

and

I(u) =
a

p
‖u‖p −

∫

RN

H(u)dx,

where u ∈ W 1,p
r (RN ) and H(t) =

∫ t

0
h(s)ds.

By the conditions (h1)-(h3), we can prove that Iλ, I ∈ C1(W 1,p
r (RN ),R).

Indeed, the weak solutions of the problem are the critical points of the corre-
sponding energy functional.

Proposition 2.1. Suppose that (h1)-(h3) hold. Then the limit problem (1.5)
has at least one ground state solution u ∈ W 1,p

r (RN ).

In order to prove the main results, we need the following lemmas.

Lemma 2.2 (Pohozǎev equality). If u is a nontrivial solution of the equation

a(−∆pu+ b|u|p−2u) = h(u), x ∈ R
N,

then u satisfies the following Pohozǎev equality

a(N − p)

p

∫

RN

|∇u|pdx = N

∫

RN

G(u)dx, where G(u) = H(u)− ab

p
|u|p.

Proof. The proof is similar to the one of Lemma 2.6 in [16]. We omit the
details. �

For convenience, we give the following notations.

L := {u ∈ W 1,p
r (RN )\{0} :

∫

RN

G(u)dx = 1}

and

P := {u ∈ W 1,p
r (RN )\{0} :

a(N − p)

p

∫

RN

|∇u|pdx = N

∫

RN

G(u)dx}.

From (h3), we have L 6= ∅ and P 6= ∅. Set L = 1
p inf
u∈L

‖∇u‖pp, β0 = inf
u∈P

I(u)

and the mountain pass value

k = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1],W 1,p
r (RN )) : γ(0) = 0, I(γ(1)) < 0}.
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Lemma 2.3. Assume that (h1)-(h3) hold. Then β0 ≤ k and

β0 =
p

N − p
(
a(N − p)

N
)

N

p L
N

p .

Proof. In order to prove β0 ≤ k, it suffices to prove that γ([0, 1]) ∩ P 6= ∅ for
all γ ∈ Γ.
Set

P (u) =
N − p

p

∫

RN

|∇u|pdx− N

a

∫

RN

G(u)dx.

By (h1) and (h2), we easily obtain that there exists ρ > 0 such that P (u) >
0, 0 < ‖u‖ ≤ ρ. For any γ ∈ Γ, we get P (γ(0)) = 0 and P (γ(1)) ≤
max{N−p

p , N
a }I(γ(1)) < 0. Thus, there exists a t0 ∈ (0, 1) such that P (γ(t0)) =

0 with ‖γ(t0)‖ > ρ. This implies that γ([0, 1]) ∩ P 6= ∅ for all γ ∈ Γ.

In the following, we prove that β0 = p
N−p (

a(N−p)
N )

N

p L
N

p . Firstly, we claim

that L > 0. In fact, if L = 0, there is {un} ⊂ L with
∫

RN G(un)dx = 1 such that

‖∇un‖p → 0 as n → ∞. From the Sobolev’s embeddingD1,p(RN ) →֒ Lp∗

(RN ),
we have ‖un‖p∗ → 0 as n → ∞. Together with the assumptions (h1) and (h2),
we get

lim
n→∞

sup

∫

RN

G(un)dx ≤ lim
n→∞

supC1

∫

RN

|un|p
∗

dx = 0.

This is a contradiction with
∫

RN G(un)dx = 1. Thus, L > 0. For any u ∈ L,
define (Φt(u))(x) = u(xt ), T (u) =

1
p

∫

RN |∇u|pdx and V (u) =
∫

RN G(u)dx. We

have

T (u(
x

t
)) = tN−pT (u)

and

V (u(
x

t
)) = tN

∫

R3

G(u)dx.

Thus, choosing tu = (a(N−p)
Np )

1

p ‖∇u‖p, we get that Φtu is a bijection from L to

P . For any u ∈ L,
I(Φtu(u)) = atN−p

u T (u)− tNu V (u)

=
p

N − p
(
a(N − p)

Np
)

N

p ‖∇u‖Np .

Furthermore,

inf
u∈P

I(u) = inf
u∈L

I(Φtu(u)),

which implies that

β0 =
p

N − p
(
a(N − p)

N
)

N

p L
N

p .
�

Lemma 2.4. If h ∈ C(RN × R) and assume that

lim
t→0

h(x, t)

tp−1
= 0
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and

lim
t→∞

sup
|h(x, t)|
|t|p∗−1

< ∞

hold uniformly in x ∈ R
N . For any {un} with un → u0 weakly in W 1,p(RN )

and un → u0 a.e. in R
N , we have

∫

RN

H(x, un)dx =

∫

RN

(H(x, un − u0) +H(x, u0))dx + o(1),

where H(x, t) =
∫ t

0 h(x, s)ds.

Proof. For the subcritical case, we refer to the reference [11]. We omit the
details. �

Proof of Proposition 2.1. Assume that there exists {un} ⊂ W 1,p
r (RN ) such

that
∫

RN G(un)dx = 1 and
∫

RN |∇un|pdx → pL as n → ∞. By the condi-
tions (h1) and (h2), we get that ‖un‖p is bounded. So, {un} is bounded in
W 1,p

r (RN ). We may assume that un → u∗ weakly in W 1,p
r (RN ). By Lemma

2.4, we have

(2.1)
∫

RN H(un)dx =
∫

RN H(un − u∗)dx+
∫

RN H(u∗)dx+ o(1).

From the conditions (h1)− (h2), for any ξ > 0, there exists Cξ > 0 such that

H(s) ≤ ξ|s|p + ξ|s|p∗

+ Cξ|s|k0 , k0 ∈ (p, p∗).

Thus

|
∫

RN

H(un − u∗)dx|

≤ ξ

∫

RN

|un − u∗|pdx+ ξ

∫

RN

|un − u∗|p∗

dx+ Cξ

∫

RN

|un − u∗|k0dx

= ξJ1 + ξJ2 + CξJ3,

where

J1 =

∫

RN

|un − u∗|pdx,

J2 =

∫

RN

|un − u∗|p∗

dx

and

J3 =

∫

RN

|un − u∗|k0dx.

From the Sobolev’s imbeddingW 1,p
r (RN ) →֒ Lk0(RN ), k0 ∈ [p, p∗], we obtain

‖un‖k0
is bounded. In connection with Minkowski inequality, one has

|J1|, |J2| ≤ C1, where C1 > 0.

In addition, since the imbedding W 1,p
r (RN ) →֒ Lk0(RN ), k0 ∈ (p, p∗) is com-

pact, we have J3 → 0 as n → ∞. So,
∫

RN H(un − u∗)dx → 0 as n → ∞.
Furthermore, it follows from (2.1) that

(2.2)
∫

RN H(un)dx =
∫

RN H(u∗)dx+ o(1).
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Next, since un → u∗ weakly in W 1,p
r (RN ), we get

lim
n→∞

∫

RN

|un|pdx ≥
∫

RN

|u∗|pdx.

Then

1 = lim
n→∞

∫

RN

G(un)dx = lim
n→∞

∫

RN

(H(un)−
ab

p
|un|p)dx

≤
∫

RN

(H(u∗)− ab

p
|u∗|p)dx

=

∫

RN

G(u∗)dx.

Case 1. V (u∗) =
∫

RN G(u∗)dx = 1. Combining with
∫

RN G(un)dx = 1 and
(2.2), then we have

(2.3) ‖un‖pp → ‖u∗‖pp as n → ∞.

Since T (un) → L as n → ∞ and T (u∗) = L, we obtain

(2.4) ‖∇un‖pp → ‖∇u∗‖pp as n → ∞.

It follows from (2.3) and (2.4) that ‖un‖ → ‖u∗‖ as n → ∞. Therefore,

un → u∗ strongly in W 1,p
r (RN ) as n → ∞.

Case 2. V (u∗) =
∫

RN G(u∗)dx > 1. There exists t0 > 0 such that
∫

RN

G(u(
x

t0
))dx = 1.

Together with V (u( x
t0
)) = tN0 V (u) = 1, we get that t0 = (V (u))−

1

N . Then we
have

T (u(
x

t0
)) = tN−p

0 T (u) ≥ L.

Namely,

T (u) ≥ t
−(N−p)
0 L

≥ (V (u))
N−p

N L

> L.

This is a contradiction with T (u) ≤ L. So we obtain that V (u∗) = 1 and

T (u∗) = L. Setting tu∗ = (a(N−p)
Np )

1

p ‖∇u∗‖p, it follows from Coleman, Glazer

and Martin [10] that w = u∗( x
tu∗

) ∈ P is a ground state solution to the limit

problem (1.5). �

Let Ar be the set of the radial ground state solution U of the problem (1.5).
From Proposition 2.1, we know that Ar 6= ∅.
Lemma 2.5. Ar is compact in W 1,p

r (RN ).
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Proof. For any sequence {un} ⊂ Ar, it follows from similar arguments [4] that
un is a minimizer of T (u) on the set

{u ∈ W 1,p
r (RN ) :

∫

RN

G(u) = β1},

where β1 = (a(N−p)L
N )

N

p .

Set vn(x) = un(β
1

N

1 x), then vn is a minimizer of T (u) on L. Namely,
‖∇vn‖pp → pL with

∫

RN G(vn)dx = 1. From the conditions (h1)-(h2) and the

Sobolev’s imbedding theorem, we can prove that {vn} is bounded in W 1,p
r (RN ).

Similar arguments in Proposition 2.1 show that there exists v0 ∈ L such that
vn → v0 strongly in W 1,p

r (RN ). Furthermore, we can obtain that un → u0 in

Ar, where u0 = v0(β
− 1

N

1 x). The proof is completed. �

Lemma 2.6. The mountain pass value corresponds with the least energy level,

namely, k = β0 = I(u0), where u0 ∈ Ar.

Proof. By the assumptions (h1)-(h3), we know that the mountain pass value k
is well defined. On the one hand, we get that β0 ≤ k. On the other hand, since
u0 is a ground state solution to the limit problem (1.5), we adopt the similar
idea in [5] and can prove that there exists a path γ ∈ Γ satisfying γ(0) = 0,
I(γ(1)) < 0 and max

t∈[0,1]
I(γ(t)) = I(u0). This implies that k ≤ β0. The proof is

completed. �

3. Proofs of main results

Set Ut(x) = U(xt ), U ∈ Ar. By Lemma 2.2, we have

I(Ut) =
a

p

∫

RN

|∇Ut|pdx−
∫

RN

G(Ut)dx

=
a

p
tN−p

∫

RN

|∇U |pdx− tN
∫

RN

G(U)dx

= (
a

p
tN−p − a(N − p)

Np
tN )

∫

RN

|∇U |pdx.

This shows that I(Ut) → −∞ as t → ∞. Thus, there exists t1 > 1 such that
I(Ut) < −3 for t ∈ [t1,+∞).

Define Dλ = max
t∈[0,t1]

Iλ(Ut). By Lemma 2.5 and Lemma 2.6, we can get that

lim
λ→0

Dλ = k.

In order to get the uniformly bounded set of the mountain pathes, we give the
following result.

Lemma 3.1. There exist λ0 > 0 and C2 > 0, such that for any λ ∈ (0, λ0),
Iλ(Ut1) < −3, ‖Ut‖ ≤ C2, ∀t ∈ (0, t1] and ‖U‖ ≤ C2, U ∈ Ar.
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Proof. By Lemma 2.5, there is a constant C3 > 0 such that ‖U‖ ≤ C3 for any
U ∈ Ar. Meanwhile,

‖Ut‖p = tN−p‖∇U‖pp + tN‖U‖pp
≤ (tN−p + tN )‖U‖p

≤ ((t1)
N−p + (t1)

N )Cp
3 .

We choose C2 = max{C3, ((t1)
N−p + (t1)

N )
1

pC3} and obtain that

‖U‖, ‖Ut‖ ≤ C2 for any U ∈ Ar.

Furthermore

Iλ(Ut1) = I(Ut1) +
λ

2p
‖Ut1‖2p

≤ I(Ut1) +
λ

2p
C2p

2 .

It follows from I(Ut1) < −3 that there exists λ0 > 0 such that

Iλ(Ut1) < −3 for any λ ∈ (0, λ0).

The proof is completed. �

By Lemma 3.1, we will define a min-max value

Cλ = inf
γ∈Γλ

max
s∈[0,t1]

Iλ(γ(s)),

where Γλ = {γ ∈ C([0, t1],W
1,p
r (RN )) : γ(0) = 0, γ(t1) = Ut1 , ‖γ(t)‖ ≤ C2+2}.

Obviously, Γλ 6= ∅ and Cλ ≤ Dλ for λ ∈ (0, λ0).

Lemma 3.2. One has lim
λ→0

Cλ = k.

Proof. It is clear that Cλ ≤ Dλ → k as λ → 0. On the other hand, for any
γ ∈ Γλ, we have γ̃(·) = γ(t1·) ∈ Γ. Together with Iλ(u) ≥ I(u), we obtain that
Cλ ≥ k. So, lim

λ→0
Cλ = k. �

For α, d > 0, set

Iαλ = {u ∈ W 1,p
r (RN ) : Iλ(U) ≤ α}

and
Ad = {u ∈ W 1,p

r (RN ) : inf
v∈Ar

‖u− v‖ ≤ d}.

Obviously, for all d > 0, Ad 6= ∅. In the following, we will find a solution to the
problem (1.1) in the neighborhood of Ar for λ > 0 small enough.

Lemma 3.3. For any {uλi
} ⊂ Ad satisfying lim

i→∞
Iλ(uλi

) ≤ k and lim
i→∞

I
′

λ(uλi
)

= 0, there exists u0 ∈ Ad such that uλi
→ u0 strongly in W 1,p

r (RN ) as i → ∞,

where lim
i→∞

λi = 0, provided that

(3.1) 0 < d < min{1, (Nk
a )

1

p }.
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Proof. For convenience, we replace λi by λ. Since uλ ∈ Ad, we have uλ =
Uλ + vλ, where Uλ ∈ Ar and vλ ∈ W 1,p

r (RN ) with ‖vλ‖ ≤ d. Because Ar is
compact, there exist U0 ∈ Ar and v0 ∈ W 1,p

r (RN ) such that Uλ → U0 strongly
in W 1,p

r (RN ), vλ → v0 weakly in W 1,p
r (RN ) and vλ → v0 a.e. in R

N . Let
u0 = U0 + v0, then u0 ∈ Ad and uλ → u0 weakly in W 1,p

r (RN ).

Firstly, we claim that u0 6≡ 0. It follows from lim
i→∞

I
′

λ(uλi
) = 0 that I

′

(u0) =

0. Otherwise, if u0 ≡ 0, then ‖U0‖ = ‖v0‖ ≤ d. By Lemma 2.2, we obtain that

‖∇U0‖p = (Nk
a )

1

p . On the other hand, by (3.1), we have

‖∇U0‖p ≤ ‖U0‖ ≤ d < (
Nk

a
)

1

p .

This is a contradiction. So u0 6≡ 0 and I(u0) ≥ k.
Secondly, we prove that uλi

→ u0 strongly in W 1,p
r (RN ). Indeed, {uλi

} is a

(PS) sequence of Iλ, that is, {uλi
} and {Iλ(uλi

)} are bounded, I
′

λ(uλi
) → 0 as

i → ∞. We obtain

uλi
→ u0 in Lq(RN ), q ∈ (p, p∗)

and

uλi
→ u0 a.e. in R

N .

For convenience, we write ui for uλi
. By (h1) and (h2), for any ξ > 0, there

exists Cξ > 0 such that

(3.2) |h(t)| ≤ ξ|t|p−1 + ξ|t|p∗−1 + Cξ|t|q−1, t ∈ R, q ∈ (p, p∗).

Thus, by Hölder inequality, we have

|
∫

RN

h(ui)(ui − u)dx|

≤
∫

RN

|h(ui)||ui − u|dx

≤
∫

RN

(ξ|ui|p−1|ui − u|+ ξ|ui|p
∗−1|ui − u|+ Cξ|ui|q−1|ui − u|)dx

≤ ξ‖ui‖p−1
p ‖ui − u‖p + ξ‖ui‖p

∗−1
p∗ ‖ui − u‖p∗ + Cξ‖ui‖q−1

q ‖ui − u‖q
= ξδ1 + ξδ2 + Cξδ3,

where

δ1 = ‖ui‖p−1
p ‖ui − u‖p,

δ2 = ‖ui‖p
∗−1

p∗ ‖ui − u‖p∗

and

δ3 = ‖ui‖q−1
q ‖ui − u‖q.

By the Sobolev’s imbedding W 1,p
r (RN ) →֒ Lq(RN ) and Minkowski inequality,

we get that δ1 and δ2 are bounded. It follows from q ∈ (p, p∗) that ‖ui−u‖q → 0,
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namely δ3 → 0. Thus, we have
∫

RN

h(ui)(ui − u)dx → 0.

So

(a+ λ‖ui‖p)(ui, ui − u) = 〈I ′

λ(ui), ui − u〉+
∫

RN

h(ui)(ui − u)dx → 0,

where (ui, ui − u) =
∫

RN (|∇ui|p−2∇ui · ∇(ui − u) + b|ui|p−2ui(ui − u))dx.
Noticing that

(a+ λ‖ui‖p) 6= 0,

we have

(3.3) (ui, ui − u) = 0.

In addition, together with ui → u weakly in W 1,p
r (RN ), we have

(3.4) (u, ui − u) = 0.

It follows from (3.3) and (3.4) that
∫

RN

((|∇ui|p−2∇ui − |∇u|p−2∇u) · ∇(ui − u) + b(|ui|p−2ui − |u|p−2u)(ui − u))dx→0.

Combining with the following standard inequality in R
N given by

〈|α|p−2α− |β|p−2β, α− β〉 ≥
{

Cp|α− β|p, p ∈ [2,+∞),
Cp|α− β|2(|α| + |β|)p−2, p ∈ (1, 2),

we can prove that un → u strongly in W 1,p
r (RN ). �

By Lemma 3.3, there exists a constant d satisfying (3.1) and C4 > 0, λ0 > 0

such that ‖I ′

λ(u)‖ ≥ C4 for u ∈ IDλ

λ ∩ (Ad\A d

2 ) and λ ∈ (0, λ0).

Lemma 3.4. There exists C4 > 0 such that for small λ > 0, Iλ(γ(s)) ≥
Cλ − C4, this shows that γ(s) ∈ A

d

2 , where γ(s) = U( ·
s ), s ∈ (0, t1].

Proof. By Pohozǎev equality,

Iλ(γ(s)) = I(γ(s)) +
λ

2p
‖γ(s)‖2p

= (
a

p
tN−p − (N − p)a

Np
tN )

∫

RN

|∇U |pdx+
λ

2p
‖U(

.

s
)‖2p.

From Lemma 3.1, we have

Iλ(γ(s)) = (
a

p
tN−p +

(N − p)a

Np
tN )

∫

RN

|∇U |pdx +O(λ).

Noticing that max
s∈(0,t1]

I(γ(s)) = k can be achieved at s = 1, there exists C5 > 0

so small that γ(s) = U( ·
s ) ∈ A

d

2 for |s − 1| ≤ C5. Combining with Cλ → k as
λ → 0, there is C4 > 0 such that

I(γ(s)) ≥ Cλ − C4
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for λ > 0 small enough. This implies that |s− 1| ≤ C5 and γ(s) ∈ A
d

2 . �

Lemma 3.5. For any λ > 0 small enough, there exists a sequence {un} ⊂
IDλ

λ ∩ Ad such that I
′

λ(un) → 0 as n → ∞.

Proof. Assume by contradiction, there exists β(λ) > 0 such that |I ′

λ(u)| ≥ β(λ),

u ∈ IDλ

λ ∩ Ad for some λ > 0. Then there exists a pseudo-gradient vector field

[19] Φλ in W 1,p
r (RN ) on a neighborhood Yλ of IDλ

λ ∩ Ad such that

‖Iλ(u)‖ ≤ 2min{1, |I ′

λ(u)|}
and

〈I ′

λ(u),Φλ(u)〉 ≥ min{1, |I ′

λ(u)|}|I
′

λ(u)|.
Denote ζλ be a Lipschitz continuous function on W 1,p

r (RN ) such that ζλ ∈ [0, 1]
and

ζλ(u) =

{

1, u ∈ IDλ

λ ∩Ad

0, u ∈ W 1,p
r (RN )\Yλ.

Define µλ be a Lipschitz continuous function on R such that µλ ∈ [0, 1] and

µλ(t) =

{

1, |t− Cλ| ≤ C4

2 ,
0, |t− Cλ| ≥ C4,

where C4 is given in Lemma 3.4. Set

ηλ(u) =

{

−ζλ(u)µλ(Iλ(u))Φλ(u), u ∈ Yλ,
0, u ∈ W 1,p

r (RN )\Yλ.

Then, the following initial value problem
{

d
dtZλ(u, t) = ηλ(Zλ(u, t)),
Zλ(u, 0) = u,

admits a unique global solution Zλ : W 1,p
r (RN ) × R+ → W 1,p

r (RN ) which
satisfies

(i) Zλ(u, t) = u, if t = 0 or u /∈ Yλ or |Iλ(u)− Cλ| ≥ C4;
(ii) ‖ d

dtZλ(u, t)‖ ≤ 2 for (u, t) ∈ W 1,p
r (RN )× R+;

(iii) d
dtIλ(Zλ(u, t)) ≤ 0.

We adopt similar idea in [8] and obtain that for any s ∈ (0, t1], there is
ts > 0 such that

Zλ(γ(s), ts) ∈ I
Cλ−

C4

2

λ , where γ(s) = U(
·
s
), s ∈ (0, t1].

Let γ0(s) = Zλ(γ(s), t∗(s)), where t∗(s) = inf{t ≥ 0, Zλ(γ(s), t) ∈ I
Cλ−

C4

2

λ }.
By similar ideas in [8, 21], we can prove that γ0(s) is continuous in [0, t1]
and ‖γ0(s)‖ ≤ C2 + 2. Therefore, we have γ0 ∈ Γλ with max

t∈[0,t1]
Iλ(γ0(t)) ≤

Cλ − C4

2 . This is a contradiction with Cλ = inf
γ∈Γλ

max
s∈[0,t1]

Iλ(γ(s)). The proof is

completed. �
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Now, we give the proofs of the main results.

Proof of Theorem 1.1. By Lemma 3.5, there exists a bounded (PS) sequence

{un} ⊂ IDλ

λ ∩ Ad. Without loss of generality, we may assume that un → uλ

weakly in W 1,p
r (RN ). In connection with Lemma 3.3 and Lemma 3.4, we can

obtain that I
′

λ(uλ) = 0 and uλ ∈ IDλ

λ ∩Ad. Furthermore, it follows from similar
arguments in Lemma 3.3 that uλ 6≡ 0 under the proper choice of d satisfying
(3.1). By the strong maximum principle, we adopt similar idea in [18] and can
prove that uλ is a positive solution of the problem (1.1). �

Proof of Theorem 1.2. For any φ ∈ C∞
0 (RN ), we have

I
′

λ(uλ)φ = I
′

(uλ)φ + λ‖uλ‖p
∫

RN

|uλ|p−2uλφdx = 0.

Then

I
′

(uλ)φ = −λ‖uλ‖p
∫

RN

|uλ|p−2uλφdx → 0 as λ → 0.

Combining with that

Iλ(uλ) = I(uλ) +
λ

2p
‖uλ‖2p,

we have

I(uλ) ≤ Cλ and I
′

(uλ) → 0 as λ → 0.

Namely, {uλ} is a bounded (PS) sequence for the energy functional I. We may

assume that uλ → u∗ weakly in W 1,p
r (RN ), then I

′

(u∗) = 0. Similar proof
as the one in Lemma 3.3 demonstrates that uλ → u∗ strongly in W 1,p

r (RN ).
By the proper choice of d > 0, we can prove that u∗ 6≡ 0. Hence I(u∗) ≥ k.
Meanwhile, we have I(u∗) ≤ k since I(uλ) ≤ Dλ → k as λ → 0. So I(u∗) = k.
By Lemma 2.6 , u∗ is a ground state solution to the limit problem (1.5). The
proof is completed. �
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