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ABSTRACT 

 
Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio 

of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it 
is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research 
provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, 
Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the 
primary equation contains a surface (double) integral representation. The double integral representation can be 
reduced to a closed form, which involves only a line (single) integral representation of the boundary of the 
surface area by applying Stoke’s theorem. Use of such line integral representations can reduce the cost of 
numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and 
particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field 
is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed 
statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition 
of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations 
are allowed except the Kirchhoff approximation. However, examinations with various types of models for 
reliability show that the equation has good performance in its applications. To analyze a general shape of 
model, a submarine type model was selected and successfully analyzed.

1. Introduction 

Acoustic Target Strength (TS) is a major parameter of 
the active sonar equation. Although it indicates the ratio 
of the intensities, developing a TS equation is a matter of 
solving the diffracted pressure field by a target. In 
solving the diffracted field, several numerical methods 
can be applied. The Boundary Element Method (BEM) 
and Finite Element Method (FEM) are the methods most 

widely used in solving the diffracted pressure field in 
low frequency. 

As TS is a parameter that takes part in the active sonar 
equation, it deals with high frequency range. This 
limitation prevents a broader application of the FEM or 
BEM as a major method in the high frequency range. In 
high frequency range, these numerical methods require 
fine mesh sizes. In addition, the FEM involves volume 
integral and BEM involves surface integral. These 
properties increase the cost of numerical calculation. 

The difficulties of the prescribed methods can be 
overcome applying the Theory of Boundary Diffraction 
Wave. The basic equations of the Theory of Boundary 
Diffraction Wave were developed by Maggi-Rubinowicz 
in the 19th century. However, their analyses were 
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restricted to cases where the wave incident upon the 
aperture is plane or spherical. In the 1960’s Miyamoto 
and Wolf (1962) developed an equation applicable to a 
general pressure distribution upon the aperture. The 
significance of the theory is in the idea of applying 
Stoke’s theorem to Helmholtz-Kirchhoff formulae to 
reduce the order of integral. As a consequence, the 
Theory of Boundary Diffraction Wave requires only line 
integral.  

In the 1970’s, Gordon (1975) developed a far field 
approximation method of Theory of Boundary 
Diffraction Wave. This method involves no integration 
when the aperture is a polygon. As the primary focus of 
the instant research is in near field, the far field 
approximate method is not applicable here. Hence, the 
maximum reduction of the order of integration should be 
line integration. 

In practice, the initial pressure distribution upon a 
surface plane (no more an aperture) is generated by the 
mechanism of reflection and transmission. The pressure 
field initially generated by a point source is reflected by 
the surface plane. To determine the initial pressure and 
particle velocity distribution, which are assumed as 
known terms of the surface plane, Kirchhoff 
approximation is applied. Kirchhoff approximation 
assumes that the factors  and , which are derived 
for reflection and transmission of an infinite plane wave 
at an infinite plane interface, can be used at every point 
of a rough surface interface (Medwin and Clay, 1998). 

ℜ Τ

In far field, the distance from the source that generates 
the initial pressure field to the surface plane is so far that 
an approximation of constant distance is feasible. In 
contrast, when the source is positioned within a close 
distance from the surface plane, constant distance 
approximation is not practicable. This causes a critical 
problem in the process of developing near field TS 
equation. However, the problem is solved by an analogy 
of the logics between the far field and near field TS 
definitions. In the process, a generalized definition of 
SCS is suggested. 

TS equation which is applicable to near field is 
developed by combining the three aspects previously 
stated which are the Theory of the Boundary Diffraction 
Wave, Kirchhoff approximation and generalized 
definition of SCS equation. 

For validation of the equation, several models, such as 
those in plate and cylinder form, were examined in the 
condition of far field. Coinciding results with far field 
equations were observed for such models. Finally, as a 
practical case, a submarine model in near field was 
analyzed. 

 

2. Development of near field Acoustic 

Target Strength equation for polygonal 

plates 

 

2.1 Theory of Boundary Diffraction Wave 
 
The generalized equation of Theory of Boundary 

Diffraction wave, which is applicable to general pressure 
field at the aperture, was developed by K. Miyomoto and 
E. Wolf. In practice, this equation is utilized for a 
polygonal surface plate. For simplicity, 1=ℜ  is 
assumed throughout the entire polygonal surface plate. 
(Use of the reflection factor indicates that Kirchhoff 
approximation is applied to the entire surface plate.) 

 
 

2.1.1 Line integral form of Helmholtz-Kirchhoff 
formulae 

 

 
Fig. 1 Illustration of notations for the Helmholtz-
Kirchhoff formulae 

 
Assume  as the space-dependent term of the wave 

which satisfies the homogeneous Helmholtz equation as 
follows. 

U

 ( ) 022 =−∇ Uk  (2.1) 

Here, ck /ω= . Let  be any closed surface bounding 
volume , throughout and on the boundary of which 

 has continuous first and second-order partial 
derivatives. According to Helmholtz-Kirchhoff integral 
the disturbance at any point 

S
V

U

P  within V  may then be 
expressed in the form of 

  (2.2) ( ) ( )∫∫ ⋅=
S

ndSPQVPU ,
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According to Helmholtz decomposition, a general 
vector field can be decomposed into a rotational term and 
an irrotational term. It will now be shown that the vector 

 may always be expressed as the curl of a 
suitably chosen vector potential . For this 
purpose, apply divergence to  as follows.. 
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Now both the functions ( )
s
jksexp  and  satisfy 

the homogeneous Helmholtz equation except the singular 

points of the domain. 

( )QU

( )
s
jksexp  is singular at the field 

point P , and  is singular at the position of self-
generating sources. Unless the self-generating sources 
and the field point does not exist on the surface , 

( )QU

S
( )
s
jksexp  and  always satisfy homogeneous 

Helmholtz equation. Even though the governing equation 
holds only in the domain but not on the boundaries, the 

property that 

( )QU

( )
s
jksexp  ,  and their second 

derivatives are continuous in the entire domain tells that 
the homogeneous Helmholtz equation is also satisfied on 
the boundary. Therefore on the boundary, 

( )QU

 ( ) ( )
s
jksk

s
jks

Q

expexp 22 −=∇  (2.5) 

 ( ) ( )QUkQU
Q
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are satisfied. Substituting equation (2.5) and (2.6) for 
(2.4), equation (2.7) is obtained.   
  (2.7) ( ) 0, =⋅∇ PQV

Q

According to Helmholtz decomposition, it is possible to 
represent WV ×∇+∇= φ . And as vector potential  
identically satisfies ,  can always be 
expressed in terms of vector potential  in the form of, 

W
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So the Helmholtz-Kirchhoff formula becomes 

  (2.9) ( ) ( )∫∫ ⋅×∇=
S

ndSPQWPU
Q

,

 
Fig. 2 Illustration of notations for the singular 
point of the vector potential 

 
Now this form can be converted into a closed form of 

boundary line (single) integral representation by 
applying Stoke’s theorem. For an opened surface  
(Fig.2), equation (2.10) is obtained. 
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Here )(' τr  is the unit vector along the tangent to Γ  
and . The second term of equation (2.10) is the line 
integration around the singular point, which arises when 
the vector potential 

jΓ

( )PQW , , is singular on the surface 
plane. 
 
 

2.1.2 Singularity problem of the vector potential 
 
In the previous section, derivation of a line (single) 

integral equation for the diffracted field, which is 
equation (2.10), was introduced. The first term of 
equation (2.10) does not have any problems in  
numerical integration. But the second term, which 
indicates the singularity of the vector potential ( )PQW , , 
causes a critical problem when integrating numerically. 
Even though the analytical solution of the singular point 
integration is known, it causes an enormous damage to 
the solution. To prevent this problem, line integral 
around the singular point should not be used. Instead, 
surface (double) integral should be applied around the 
singular point. Therefore, the integral equation, which is 
applied in practical cases, should be a hybrid form of line 
(single) integration and surface (double) integration as 
the following equation (2.11).  



  (2.11) 

( ) ( )

( ) ( )∑ ∫∫∫

∫
⋅+⋅+

⋅=

Γ

Γ

j S jj

ndSPQVdrPQW

drPQWPU

,)(',

)(',

ττ

ττ

   
 

4

)Here,  is the vector, which is the integrand of 
Helmholtz-Kirchhoff formula. is the surface around 

the singular point . Notice that the ‘ ’ notation is 

not written in the second term of equation (2.11). This 
means that should be large enough to neglect the 

singular effect on the first term. Although equation (2.11) 
involves surface (double) integration, it provokes little 
increase in the numerical calculation cost. This is 
because only a small area of the surface around the 
singular point requires surface integral. 

( PQV ,
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2.1.3 Development of vector potential ( )PQW ,  
for polygonal plates associated with a 
spherical wave 

 

 
Fig. 3 Illustration for the vector potential where 
the initial source is a spherical wave 
 

According to K. Miyamoto and E. Wolf, the vector 
potential  of a spherical wave is ( PQW , )
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Here,  is the unit vector in the direction of . 
Geometrical meanings of other variables are illustrated in 
Fig.3. As a divergent spherical wave follows the 

sommerfeld radiation condition,  is zero. Therefore, 
vector potential 

Ŝ S

∞W
( )PQW ,  of a spherical wave is, 
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Apply equation (2.13) to a monostatic & polygonal 
plate case. 

 
Fig. 4 Illustration of monostatic & polygonal plate 
case 
 
P : Position of real source & receiver (monostatic) 
O : Position of mirror image source. The Origin of 

calculation 
Q : Point position of the boundary of polygonal plate 

0N : Position of starting vertex of an edge of 
polygonal plate 

1N : Position of starting vertex of an edge of 
polygonal plate 

R : Vector OQ  

S : Vector PQ  

L : Vector OP  

0θ : Angle between PQ  and the polygonal plate 
It is also assumed that 1=ℜ  for simplicity. 
 
As the case is monostatic, equation (2.13) becomes 
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The angle between and  equals two times S R 0θ .  
Therefore equation (2.14) becomes, 
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Where, 02θθ =  and 
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×
×

=ˆ . 



Substituting 02θθ =  to equation (2.15), 
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The front three terms of equation (2.16) can be 

represented as a function of τ  by substituting three 
equations above to equation (2.16). 

 

( )

( ) ( )(
( ) ( )

)

( ) ( ) LNNNN
L

NNNN

NNNNjk

S

Sjk

−−++
∗

−++

−++
=

τ

τ

τ
π

θ
π

0

02/12/1

0exp
4
1

tan
2exp

4
1

110

2
110

110

02

 (2.17) 

 
Also for line integration,  should be 

evaluated where, 
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Consequently, using equation (2.17) and (2.18), 
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∗  : multiplication 
•  : dot operator 
×  : cross operator 

 
 

2.2 Generalized definition of SCS 
 
Definitions of SCS and TS have identical physical 

meanings. The definition of SCS is the ratio of the 
squared value of amplitude of radiated acoustic pressure 
from the source to the squared value of amplitude of re-
radiated acoustic pressure by the target. Similarly, the 
definition of TS indicates the ratio of the radiated 
intensity from the source to the re-radiated intensity by 
the target. It is obvious that intensity is proportional to 
squared value of the amplitude of acoustic pressure, 
unless the source or receiver is close to the target 
compared to the wavelength. 

Near field, which is the focus of the instant research, 
refers to the distance between the source or receiver and 
the target. And the phrase “near field” used in the instant 
research, is much larger than the wavelength and has 
subequal order with the characteristic length of the target. 

Thus, the development of a generalized definition of 
SCS is, in other words, the development of a generalized 
definition of TS. The established definition of SCS is 
applicable only when the source and receiver are both far 
from the target. As the focus of the instant research is in 
the near field range, it is necessary to define a 
generalized representation of SCS.  

 
 

2.2.1 Far field definition of SCS 
 
Physically, SCS is the cross sectional area of the target 

which intercepts the initially generated pressure field and 
its’ notation is σ  in general. To consider the phase 

information of the re-radiated wave, σ , which is the 
square root value of σ  will be used instead of σ . 

 
inc

ref

U
U

Rπσ 2≡  (2.20) 

Here,  is the distance from the target to the receiver. 
 is the acoustic pressure at the receiver position 

which is re-radiated by the target. 

R
refU

incU  is the incident 
acoustic pressure generated from the source. Note that 

incU  is the acoustic pressure at the target position. 
 In far field ranges, the distance between the source 
(receiver) and the target is much larger than the 
characteristic length of the target. Therefore,  and R

incU  can be approximated as constant values through 

out the entire target. Consequently, solving  is the 

sole problem in evaluating SCS.  
refU

However, the approximations which were prescribed 
above are not valid in near field ranges. As the order of 
distance from the source (receiver) to the target is similar 



to that of the characteristic length of the target,  and R

incU  cannot be approximated as constant values.  
 
 

2.2.2 Generalized definition of SCS applicable to 
near field 

 
In near field ranges,  and R incU  varies depending 

on the position of the selected point of the target. 
Consequently, σ  varies even when the source 
position, the receiver position and the target position are 
fixed. 

One of the important characteristics of SCS is that 
SCS is independent to distance. SCS only depends on the 
relative position of the source, receiver and target. 
Relative position indicates the (
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)φθ ,  coordinate out of 
( )φθ ,,r  spherical coordinate. Therefore, it is necessary 
to define a compatible definition of SCS that can be 
applied to near field ranges. 

In the range of high frequency, it is obvious that the 
creeping wave (surface wave) effect is negligible. Hence, 
in far field, 

 L++= 21 σσσ total  (2.21) 

Where, totalσ  is the total SCS of a model and jσ  
is the SCS of portions of the model. This property of 
SCS provides a clue of generalized definition of SCS. 

The generalized definition of SCS should satisfy the 
following conditions.  

(1) The generalized SCS definition should be 
independent of distance from the target to 
receiver. 

(2) The generalized SCS definition should be 
identical to the definition of SCS in far field 
ranges. 

(3) The generalized SCS definition should be 
dependent only to the relative position of the 
source, receiver and the target. 

Condition (1) and (3) have synonymous meanings. 
Satisfying these conditions, the generalized definition 

of SCS is, 

 ( ) ( )
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⋅

=≡
S inc

dS
QU

nPQVQRd ,2 πσσ  (2.22) 

Where,  is the distance between the point of the 
target surface and the receiver.  is the integrand 

of the Helmholtz-Kirchhoff formula. 

( )QR
( PQV ,

 
 

2.3 Kirchhoff approximation 
 
As Kirchhoff approximation is a well known theory in 

the art, and is applied to a wide range of fields in 
engineering, it will be introduced briefly in this section. 
Kirchhoff approximation assumes that the factors ℜ  
and Τ , which are derived for reflection and 
transmission of an infinite plane wave at an infinite plane 
interface, can be used at every point of a rough surface 
interface. In other words, Kirchhoff approximation 
assumes wave as a ray in representing the reflected and 
transmitted waves at the point where the ray strikes the 
plane surface. As most of the underwater vehicles’ 
surfaces are not rough, this approximation is valid. In 
this research, 1=ℜ is assumed for simplicity. 

 
 

2.4 Development of near field TS equation for 
polygonal plates 

 
A vector potential  for monostatic & 

polygonal plate case was developed in section 2.1. And 
in section 2.2, a generalized definition of SCS that is 
applicable to near field has been suggested. According to 
these sections, it is possible to develop a generalized 
representation of TS that is applicable to near field. 

( PQW , )

 
 

2.4.1 Modification of the generalized definition 
of SCS 

 
According to equation (2.22), the evaluation of SCS in 

near field involves a surface (double) integral. As in 
section (2.1), it may be possible to reduce the surface 
integral to line integral form if and only if the divergence 
of the integrand of equation (2.22) identically equals zero. 
Unfortunately, this is not true. Hence, it is impossible to 
reduce the order of integration in a mathematical 
procedure. 

However, it is possible to reduce the cost of numerical 
calculation by modifying the generalized definition of 
SCS. As the three conditions prescribed in section 2.2.2 
are the only requirements of the generalized definition of 
SCS, SCS may be defined differently as the followings. 

 )
( )QUinc  is the 

incident acoustic pressure amplitude on the surface of the 
target which is generated from the source. And  is the 
normal vector of the surface . 
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Where,  is the re-radiated acoustic pressure 

which can be evaluated by equation (2.11) and (2.19). 
 is the distance between the receiver and the target. 

refU

R
These two types of definitions (2.23-1,2) and (2.24-

1,2) satisfy the three conditions stated in section 2.2.2. 
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will be called “the representative reference”. 
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through the entire target surface that cancel out the 
dependency of distance of target-receiver. 

Even though the generalized definitions of SCS (2.23) 
and (2.24) also involve surface integral similar to that of 
definition (2.22), the cost of numerical integration is not 
high. This is because the integrands of the surface 
integral in definitions (2.23) and (2.24) vary 
monotonically. Therefore, fine mesh of the target is not 
necessary, and this leads to little effect to numerical cost. 

 
 

2.4.2 Development of near field TS equation 
for polygonal plates 

 
Near field TS equation for polygonal plates can be 

developed by a combination of the previously developed 
equations and definitions. The TS equation is developed 
using equations (2.11), (2.19), definitions (2.22), (2.23) 
and the simple relation between TS and SCS.  
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∗  : multiplication 
•  : dot operator 
×  : cross operator 
 
 

3. Validation of the near field TS equation 

for polygonal plates 

3.1 Rectangular plate 
As general models are composed of polygonal plates, 

the inconsistency of far field equation and near field 
equation should be examined. As shown below, the order 
of characteristic length compared to the order of distance 
affects the inconsistency. 
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3.1.1 x = 1m, y = 1m, Frequency = 1000Hz 
For a  rectangular plate, the difference 

between the far field and near field TS equations is 
negligible in the entire range. This is because the 
characteristic length of the plate is much shorter than the 
distance. 

mm 11 ×

 
Table 1 Comparison of maximum TS value for a 
x=1m, y=1m rectangular plate 
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Distance 20m 100m 10000m 
FF eq. -3.5 dB -3.5 dB -3.5 dB 
NF eq. -3.5 dB -3.5 dB -3.5 dB 
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Fig. 5 Comparison of the far field equation and 
near field equation for a x=1m, y=1m rectangular 
plate - Distance = 10000m 
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Fig. 6 Comparison of the far field equation and 
near field equation for a x=1m, y=1m rectangular 
plate - Distance = 10000m 
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Fig. 7 Comparison of the far field equation and 
near field equation for a x=1m, y=1m rectangular 
plate - Distance = 20m 

 
 

3.1.2 x = 10m, y = 0.5m, Frequency = 1000Hz 
For a mm 5.010 ×  plate, the inconsistency of the near 

field equation and the far field equation is more obvious 
than that of a mm 11 ×  plate. 

Specifically, in Fig.10, the effect of near field becomes 
larger as the orders of distance and the characteristic 
length become subequal.  

 
Table 2 Comparison of maximum TS value for a 
x=10m, y=0.5m rectangular plate 

Distance 20m 100m 10000m 
FF eq. 10.5 dB 10.5 dB 10.5 dB 
NF eq. 5.6 dB 10.0 dB 10.5 dB 
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Fig. 8 Comparison of the far field equation and 
near field equation for a x=10m, y=0.5m 
rectangular plate - Distance = 10000m 

 



0 10 20 30 40 50 60 70 80 90
-70

-60

-50

-40

-30

-20

-10

0

10

20

Theta(degree)

TS
(d

B
)

Comparison of Far Field equation & Near Field equation of Plate Model

Far Field Equation
Near Field Equation

 

   
 

9

Fig. 9 Comparison of the far field equation and 
near field equation for a x=10m, y=0.5m 
rectangular plate – Distance = 100m 
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Fig. 10 Comparison of the far field equation and 
near field equation for a x=10m, y=0.5m 
rectangular plate – Distance = 20m 

 
 

3.2 Cylinder 
The purpose of examining a cylinder is to determine 

as to whether the curvature affects the inconsistency 
between the near field equation and the far field equation. 
The examination to cylinder shows that the curvature 
affects the inconsistency around the normal direction 
even in the far field.  

 
 

3.2.1 R=5m, H=10m, Frequency=1000Hz 
 
As shown in the previous examination of the plates, 

the relative characteristic length of the cylinder to the 
distance affects the inconsistency. Moreover, as shown in 
Fig.12, the curvature of the cylinder affects the 
inconsistency around the normal direction even in the far 
field ranges. 

Table 3 Comparison of maximum TS value for a 
R=5m, H=10m  cylinder 

Distance 20m 100m 10000m 
FF eq. 13.5 dB 21.4 dB 22 dB 
NF eq. 22.2 dB 24.2 dB 24 dB 

Analytical 22.2 dB 22.2 dB 22 dB 
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Fig. 11 R=5m, H=10m Cylinder model 
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Fig. 12 Comparison of the far field equation, near 
field equation and analytical TS solution for a 
R=5m, H=10m cylinder model – Distance=10000m 
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Fig. 13 Comparison of the far field equation, near 
field equation and analytical TS solution for a 
R=5m, H=10m cylinder model – Distance=100m 
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Fig. 14 Comparison of the far field equation, near 
field equation and analytical TS solution for a 
R=5m, H=10m cylinder model – Distance=20m 

 

3.2.2 R=5m, H=40m, Frequency=1000Hz 
 
As the characteristic length of the cylinder increases, 

the inconsistency increases accordingly. It becomes more 
obvious that the curvature of the cylinder affects the 
inconsistency near the normal direction even in the far 
field range. 

 
Table 4 Comparison of maximum TS value for a 

R=5m, H=40m cylinder 
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Distance 50m 100m 10000m 
FF eq. 18.3 dB 21.8 dB 34.2 dB 
NF eq. 25.4 dB 24.6 dB 35.5 dB 

Analytical 34.3 dB 34.3 dB 34.3 dB 
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Fig. 15 R=5m, H=40m Cylinder model 
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Fig. 16 Comparison of the far field equation, near 
field equation and analytical TS solution for a 
R=5m, H=40m cylinder model – Distance=10000m 
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Fig. 17 Comparison of the far field equation, near 
field equation and analytical TS solution for a 
R=5m, H=40m cylinder model – Distance=100m 
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Fig. 18 Comparison of the far field equation, near 
field equation and analytical TS solution for a 
R=5m, H=40m cylinder model – Distance=50m 

 
 

4. Application to an underwater vehicle 

(Submarine) 
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Fig. 19 Submarine Model & Source position 

 
 

4.1 Far field analysis 
 
In the previous section (2.2.2), the generalized 

definition of SCS satisfies the three conditions. 
Specifically, as condition (2) is satisfied, TS evaluated 
using either the far field equation or the near field 
equation would have subequal values. However, as 
shown in the previous section (3.2), curvature affects 
inconsistency between the far field equation and the near 
field equation. Therefore, similar tendency of the curve, 
but not identical values are observed in the results. 

Table 5 Comparison of maximum TS values of the 
far field equation and near field equation 
Distance = 10000m, Frequency = 5000Hz 

Maximum TS value 
FF eq. 31.8 dB 
NF eq. 34.2 dB 
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Fig. 20 Comparison of the far field equation and 
near field equation and analytical TS solution for 
a submarine model 
Distance = 10000m, Frequency = 5000Hz 

 
 

4.2 Near field analysis 
 
As shown in the examinations for plates and cylinders, 
TS values evaluated by the near field equation and far 
field equation are far inconsistent. Hence, it is obvious 
that inconsistent results will be shown in the near field 
analysis. 
 

Table 6 Comparison of maximum TS values of the 
far field equation and near field equation 
Distance = 10000m, Frequency = 5000Hz 

Maximum TS value 
FF eq. 25.0 dB 
NF eq. 27.2 dB 
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Fig. 21 Comparison of the far field equation and 

near field equation and analytical TS solution for a 
submarine model 
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5. Conclusions 

 
By introducing a generalized definition of SCS and a 

vector potential for polygonal plates in monostatic 
conditions, a new TS equation applicable to near field 
has been developed. Because this equation assumes a 
spherical source, it solves the problems of previously 
developed methods. Such methods assume far field, so 
that spherical wave could be assumed as a plane wave in 
the aspect of phase. In contrast, the method developed in 
the instant research does not assume any approximations. 
Therefore, the equation developed in the instant research 
is applicable to near field as well as far field; the instant 
method produces better analysis results with a relatively 
higher precision. Also, as the equation’s major 
component is line integration, it is possible to reduce the 
cost of numerical calculation. 
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