References
- Akinola, A. (2001), "An application of nonlinear fundamental problems of a transversely isotropic layer in finite deformation", Int. J. Nonlin. Mech., 91(3), 307-321.
- An, C., Gu, J. and Su, J. (2015), "Exact solution of bending of clamped orthotropic rectangular thin plates", J. Braz. Soc. Mech. Sci. Eng., 38(2), 601-607.
- Batista, M. (2010), "New analytic solution for bending problem of uniformly loaded rectangular plate supported on corner points", IES J. Part A: Civil Struct. Eng., 3(2), 462-474.
- Fadodun, O.O. (2014), "Two-dimensional theory for a transversely isotropic thin plate in nonlinear elasticity", Ph.D. dissertation, Obafemi Awolowo University, Ile-Ife, Nigeria.
- Imrak, E. and Fetvaci, C. (2009), "An exact solution of a clamped rectangular plate under uniform Load", Appl. Math. Sci., 1(43), 2129-2137.
- Imrak, E. and Gerdemali, I. (2009), "The deflection solution of a clamped rectangular thin plate carrying uniformly load", Mech. Bas. Des. Struct. Mach., 37, 462-474 https://doi.org/10.1080/15397730903124262
- Lie, R., Zhong, Y. and Liu, Y. (2009), "On finite integral transform method for exact bending solutions of fully clamped orthtropic rectangular thin plates", Appl. Math. Lett., 22, 1821-1827. https://doi.org/10.1016/j.aml.2009.07.003
- Lychev, S.A., Lycheva, T.N. and Manzhirov, A.V. (2011), "Unsteady vibration of a growing circular plate", Mech. Solid., 46(2), 325-333. https://doi.org/10.3103/S002565441102021X
- Ventsel, E. and Krauthammer, T. (2001), Thin plate and shell theory, analysis and application, Marce Dekker, Inc., New York and Basel NY, USA.
- Wu, H.J., Liu, A.Q. and Chen, H.L. (2007), "Exact solution for free-vibration analysis of rectangular plates using Bessel functions", J. Appl. Mech., 74, 1247-1251. https://doi.org/10.1115/1.2744043
- Zhang, C.C., Zhu, H.H., Shi, B. and Mei, G.X. (2014), "Bending of a rectangular plate resting on a fractionalized Zener foundation", Struct. Eng. Mech., 52(6), 1069-1084. https://doi.org/10.12989/sem.2014.52.6.1069
- Zhong, Y., Zhao, X. and Liu, H. (2013), "Vibration of plate on foundation with four edges free by finite cosine integral transform method", Latin Am. J. Solid. Struct., 11(5), 854-862. https://doi.org/10.1590/S1679-78252014000500008
Cited by
- Dynamic analysis of a transversely isotropic non-classical thin plate vol.25, pp.1, 2017, https://doi.org/10.12989/was.2017.25.1.025
- Fractional wave propagation in radially vibrating non-classical cylinder vol.13, pp.5, 2017, https://doi.org/10.12989/eas.2017.13.5.465
- Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation vol.23, pp.5, 2019, https://doi.org/10.12989/cac.2019.23.5.303
- Conformable solution of fractional vibration problem of plate subjected to in-plane loads vol.28, pp.6, 2019, https://doi.org/10.12989/was.2019.28.6.347