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ON A CLASS OF NONCOOPERATIVE FOURTH-ORDER

ELLIPTIC SYSTEMS WITH NONLOCAL TERMS AND

CRITICAL GROWTH

Nguyen Thanh Chung

Abstract. In this paper, we consider a class of noncooperative fourth-
order elliptic systems involving nonlocal terms and critical growth in a

bounded domain. With the help of Limit Index Theory due to Li [32]

combined with the concentration compactness principle, we establish the
existence of infinitely many solutions for the problem under the suitable

conditions on the nonlinearity. Our results significantly complement and
improve some recent results on the existence of solutions for fourth-order

elliptic equations and Kirchhoff type problems with critical growth.

1. Introduction

In this paper, we are interested in the existence of nontrivial solutions for
the following fourth-order elliptic systems

(1.1)

 ∆2u−M
(∫

Ω
|∇u|2 dx

)
∆u = |u|2∗−2u+ Fu(x, u, v) in Ω,

−∆2v +M
(∫

Ω
|∇v|2 dx

)
∆v = |v|2∗−2u+ Fv(x, u, v) in Ω,

u = ∆u = 0, v = ∆v = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 5) is a smooth bounded domain, 2∗ = 2N
N−4 , ∆2(·) =

∆(∆·) is the biharmonic operator, M : R+
0 := [0,+∞) → R is a increasing

and continuous function, ∇F = (Fu, Fv) is the gradient of a C1-function F :
Ω × R2 → R+

0 with respect to the variable w = (u, v) ∈ R2. Let us assume
throughout this paper that

(M1) There exists m0 > 0 such that

M(t) ≥ m0, ∀t ∈ R+
0 ;
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(M2) There exists σ ∈
(

2
2∗
, 1
]

such that

M̂(t) ≥ σM(t)t, ∀t ∈ R+
0 ,

where M̂(t) =
∫ t

0
M(τ) dτ .

We can see that there are many functions satisfying conditions (M1)-(M2),

for example M(t) = m0 + bt
1
σ−1 with σ ≤ 1, m0 > 0 and b ≥ 0. The energy

functional corresponding to problem (1.1) is

J(u, v) =
1

2

∫
Ω

|∆u|2 dx− 1

2

∫
Ω

|∆v|2 dx

+
1

2
M̂

(∫
Ω

|∇u|2 dx
)
− 1

2
M̂

(∫
Ω

|∇u|2 dx
)

− 1

2∗

∫
Ω

|u|2∗ dx− 1

2∗

∫
Ω

|v|2∗ dx−
∫

Ω

F (x, u, v) dx

which is strongly indefinite in the sense that J is unbounded from below and
from above on any subspace of finite codimension. Problem (1.1) is related
to extensible beam equations and stationary Berger plate equations. More
precisely, Woinowsky-Krieger [30] studied the equation

(1.2)
∂2u

∂t2
+
EI

ρ

∂4u

∂x4
−

(
H

ρ
+
EA

2ρL

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0,

where L is the length of the beam in the rest position, E is the Young modulus
of the material, I is the cross-sectional moment of interia, ρ is the mass density,
H is the tension in the rest position and A is the cross-sectional area. This
model was proposed to modify the theory of the dynamic Euler-Bernoulli beam,
assuming a nonlinear dependence of the axial strain on the deformation of the
gradient. In [3], Berger studied the equation

(1.3)
∂2u

∂t2
+ ∆2u−

(
Q+

∫
Ω

|∇u|2 dx
)

∆u = f(x, ut, x),

which describes large deflection of plate, where the parameter Q describes in-
plane forces applied to the plate and the function f represents transverse loads
which may depend on the displacement u and the velocity ut. Problem (1.1)
is a generalization of the stationary problem associated with problem (1.2)
in dimension one or problem (1.3) in dimension two. For important details
about the physical motivation of equations (1.2) and (1.3), interested readers
are referred to [2, 31].

In recent years, there have been many papers concerning elliptic equations
with nonlocal terms. In [8–11, 24, 33], the authors have studied the existence
and multiplicity of solutions for Kirchhoff type problems with subcritical or
critical growth conditions, we refer to [7,17] for further information about this
type of problems. In [27], Wang and An considered the following fourth elliptic
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equation

(1.4)

{
∆2u−M

(∫
Ω
|∇u|2 dx

)
∆u = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 1, is a smooth bounded domain, f : Ω × R → R and
M : R+

0 → R are continuous functions and f has subcritical growth. By
assuming that M is bounded on R+

0 and the nonlinear term f satisfies the
Ambrosetti-Rabinowitz type condition, Wang et al. obtained in [27] at least one
nontrivial solution for problem (1.4) using the mountain pass theorem. More-
over, the authors also showed the existence at least two solutions in the case
when f is asymptotically linear at infinity. After that, Wang et al. [28] studied
problem (1.4) in the case when M is unbounded function, i.e., M(t) = a+ bt,
where a > 0, b ≥ 0 by using the mountain pass techniques and the truncation
method. Some extensions regarding these results can be found in [1, 13, 25]
in which the authors considered problem (1.4) in RN . Relatively speaking,
problem (1.4) with critical growth condition have rarely been considered, we
refer to some interesting papers [5,15,26]. There, the authors have established
the existence and multiplicity of solutions for the problem using variational
methods combined with the concentration compactness principle due to Lions
[21,22].

In this paper, we are interested in the existence of solutions for a class
of noncooperative fourth-order elliptic systems involving nonlocal terms and
critical growth. Unlike as in [5, 15, 26], our main tool used here is Limit index
theory firstly introduced by Li [32] for local problems with subcritical growth
condition in bounded domains. Huang et al. [16] developed the method of
Li to noncooperative elliptic systems in RN using the principle of symmetric
criticality and it was also extended by Cai et al. [6] to the case when the energy
functional may not locally Lipschitz continuous in Banach spaces. In [20], Lin
et al. considered noncooperative elliptic systems with critical exponents of the
form

(1.5)

 ∆u = |u|2∗−2u+ Fu(x, u, v) in Ω,
−∆v = |v|2∗−2v + Fv(x, u, v) in Ω,
u = v = 0 on ∂Ω,

where Ω is an bounded domain in RN , N ≥ 5 and 2∗ = 2N
N−4 . There, the

authors established the existence of infinitely many solutions for problem (1.5)
without using Concentration Compactness Principle. Some similar results for
p-Laplacian or p(x)-Laplacian problems were obtained by Fang et al. [14] and
S. Liang et al. [18, 19]. Motivated by the contribution cited above, we shall
study the existence of solutions for (1.1). We can see that there are three
main difficulties in considering our problem. Firstly, problem (1.1) involves
nonlocal terms M

(∫
Ω
|∇u|2 dx

)
and M

(∫
Ω
|∇v|2 dx

)
which prevents us from

applying the methods as before. The second difficulty is that the energy func-
tional associated to the problem is strongly indefinite in the sense that it is



1422 N. T. CHUNG

neither unbounded from below or from above on any subspace of finite codi-
mension. Therefore, one cannot apply the symmetric mountain pass theorem
on the energy functional. Finally, one of our difficulties comes from the lack
of compactness of the embedding H2(Ω) ∩ H1

0 (Ω) ↪→ L2∗(Ω). To overcome
this difficulty, we use the Concentration Compactness Principle due to Lions
[21,22]. It is worth emphasizing that our situation here is different from those
presented in the papers [12, 23, 33]. We believe that with the same arguments
as presented in this paper, we can obtain some similar results for the problem
involving the p-biharmonic operator ∆

(
|∆ · |p−2∆·

)
.

In order to state the main results concerning problem (1.1), we introduce
the following hypotheses

(F1) F (x, s, t) = F (x,−s,−t) for all (x, s, t) ∈ Ω× R2;

(F2) lim|s|→+∞
Fs(x,s,t)
|s|2∗−1 = 0 uniformly in x ∈ Ω and t ∈ R;

(F3) Ft(x, s, t)t ≥ 0 for all (x, s, t) ∈ Ω× R2;

Under assumptions (F1) and (F2), we have

Fs(x, s, t)s = o(|s|2∗),

which means that, for all ε > 0 and fixed t, there exist a(ε), b(ε) > 0 such that

(1.6) |F (x, s, 0)| ≤ a(ε) + ε|s|2∗ , |Fs(x, s, t)s| ≤ b(ε) + ε|s|2∗ , ∀(x, s) ∈ Ω×R.

Hence, together with condition (1.6) and the mean value theorem for the
number σ in (M2) and fixed t we have

(1.7)
∣∣∣F (x, s, 0)− σ

2
Fs(x, s, t)s

∣∣∣ ≤ c(ε) + ε|s|2∗ , ∀(x, s) ∈ Ω× R,

for some c(ε) > 0.
In this paper, we denote by E = H2(Ω)∩H1

0 (Ω) the Hilbert space equipped
with the inner product

〈u, v〉E =

∫
Ω

(∆u∆v +∇u · ∇v) dx

and the norm

‖u‖E =

(∫
Ω

|∆u|2 + |∇u|2 dx
) 1

2

, u ∈ E.

We then have that E is continuously embedded into the Lebesgue space

Lr(Ω) endowed the norm |u|r =
(∫

Ω
|u|r dx

) 1
r , 1 ≤ r ≤ 2∗. Moreover, the

embedding is compact if 1 ≤ r < 2∗. Denote by Cr > 0 the best constant for
this embedding, that is,

(1.8) Cr|u|r ≤ ‖u‖E , ∀u ∈ E.
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In particular, if S is the best constant for the embedding E ↪→ L2∗(Ω), then it
is defined by the formula

(1.9) S := inf
u∈E\{0}

∫
Ω

(
|∆u|2 + |∇u|2

)
dx(∫

Ω
|u|2∗ dx

) 2
2∗

.

For the sake of notation, we shall denote c(ε) = C̃ throughout this paper

if ε = 1
2

(
σ
2 −

1
2∗

)
, where c(ε) is given by (1.7). In order to state the main

result of the paper, we assume further that F (x, s, t) also fulfills the following
hypothesis.

(F4) There exist µ > 2
σ , L > 0 (where L will be determined latter) and a

constant

ξ < |Ω|−1 min

{
0,

1

2

(
σ

2
− 1

2∗

)
S
N
4 − C̃|Ω|

}
such that

F (x, s, t) ≥ L|s|µ − ξ, (x, s, t) ∈ Ω× R2.

We shall seek solutions of problem (1.1) in the space H = E ×E which is a
Hilbert space under the inner product

〈w1, w2〉H =

∫
Ω

(∆u1∆u2 + ∆v1∆v2 +∇u1 · ∇u2 +∇v1 · ∇v2) dx,

wi = (ui, vi), i = 1, 2 and the norm

‖w‖H = ‖u‖E + ‖v‖E , w = (u, v) ∈ H.

Definition 1.1. We say that w = (u, v) ∈ H is a weak solution of problem
(1.1) if it holds that∫

Ω

∆u∆ϕdx−
∫

Ω

∆v∆ψ dx+M

(∫
Ω

|∇u|2 dx
)∫

Ω

∇u · ∇ϕdx

−M
(∫

Ω

|∇v|2 dx
)∫

Ω

∇v · ∇ψ dx−
∫

Ω

|u|2∗−2uϕdx−
∫

Ω

|v|2∗−2vψ dx

−
∫

Ω

(Fu(x, u, v)ϕ+ Fv(x, u, v)ψ) dx = 0

for all (ϕ,ψ) ∈ X.

Theorem 1.2. Assume that the functions M and F satisfy the conditions
(M1)-(M2) and (F1)-(F4). Then there exists an integer k0 > 1 such that
problem (1.1) has at least k0 − 1 pairs nontrivial weak solutions.

In the rest of this section, we consider problem (1.1) in the special case
M(t) = a+ bt, t ∈ R+

0 , a > 0 and b ≥ 0. Then, the problem becomes

(1.10)

 ∆2u−
(
a+ b

∫
Ω
|∇u|2 dx

)
∆u = |u|2∗−2u+ Fu(x, u, v) in Ω,

−∆2v +
(
a+ b

∫
Ω
|∇v|2 dx

)
∆v = |v|2∗−2u+ Fv(x, u, v) in Ω,

u = ∆u = 0, v = ∆v = 0 on ∂Ω,
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where Ω ⊂ RN (N ∈ {5, 6, 7}) is a smooth bounded domain and 2∗ = 2N
N−4 . A

function w = (u, v) ∈ H is said to be a weak solution of problem (1.10) if it
holds that∫

Ω

∆u∆ϕdx−
∫

Ω

∆v∆ψ dx+

(
a+ b

∫
Ω

|∇u|2 dx
)∫

Ω

∇u · ∇ϕdx

−
(
a+ b

∫
Ω

|∇v|2 dx
)∫

Ω

∇v · ∇ψ dx−
∫

Ω

|u|2∗−2uϕdx−
∫

Ω

|v|2∗−2vψ dx

−
∫

Ω

(Fu(x, u, v)ϕ+ Fv(x, u, v)ψ) dx = 0

for all (ϕ,ψ) ∈ X. In relation (1.7), we consider ε = 1
2

(
1
4 −

1
2∗

)
> 0 since

N ∈ {5, 6, 7} and set Ĉ = c(ε). From Theorem 1.2 we obtain a multiplicity
result for (1.10) as follows.

Corollary 1.3. Assume that the function F : Ω × R → R satisfies the condi-
tions (F1)-(F3) and

(F ′4) There exist µ > 4, L > 0 (where L will be determined latter) and a
constant

ξ < |Ω|−1 min

{
0,

1

2

(
1

4
− 1

2∗

)
S
N
4 − Ĉ|Ω|

}
such that

F (x, s, t) ≥ L|s|µ − ξ, (x, s, t) ∈ Ω× R2.

Then there exists an integer k0 > 1 such that problem (1.10) has at least k0−1
pairs nontrivial weak solutions.

2. Preliminaries

In this section, we shall recall the Limit Index Theory due to [32]. In order
to do that, let us first introduce the following definitions, the interested readers
can easily refer to the book due to Willem [29].

Definition 2.1. The action of a topological groupG on a normed space (Z, ‖·‖)
is a continuous map G× Z → Z : [g, z] 7→ gz such that

1 · z = z, (gh)z = g(hz), z 7→ gz is linear, ∀g, h ∈ G.
The action is isometric if

‖gz‖ = ‖z‖, ∀g ∈ G, z ∈ Z,
and in this case Z is called a G-space.

The set of invariant points is defined by

Fix(G) := {z ∈ Z : gz = z, ∀g ∈ G} .
A set A ⊂ Z is invariant if gA = A for every g ∈ G. A function ϕ : Z → R

is invariant if ϕ(gz) = ϕ(z) for every g ∈ G and z ∈ Z. A map f : Z → Z
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is equivariant if f(gz) = g(fz) for every g ∈ G and z ∈ Z. Suppose Z is a
G-Banach space, that is, there is a G-isometric action on Z. Let∑

:= {A ⊂ Z : A is closed and gA = A, ∀g ∈ G}

be a family of all G-invariant closed subset of Z, and let

Γ :=
{
h ∈ C0(Z,Z) : h(gz) = g(hz), ∀g ∈ G

}
be the class of all G-equivariant mapping of Z. Finally, we call the set

O(z) := {gz : g ∈ G}
a G-orbit of z.

Definition 2.2. An index for (G,Σ,Γ) is a mapping i : Σ → Z+ ∪ {+∞}
(where Z+ is the set of all nonnegative integers) such that for all A,B ∈ Σ,
h ∈ Γ, the following conditions are satisfied:

(1) i(A) = 0⇔ A = θ;
(2) (Monotonicity) A ⊂ B ⇒ i(A) ≤ i(B);
(3) (Subadditivity) i(A ∪B) ≤ i(A) + i(B);

(4) (Supervariance) i(A) ≤ i(h(A)) for all h ∈ Γ;
(5) (Continuity) If A is compact and A∩Fix(G) = 0, then i(A) < +∞ and

there is a G-invariant neighbourhood N of A such that i(N) = i(A);
(6) (Normalization) If x /∈ Fix(G), then i(O(x)) = 1.

Definition 2.3. An index theory is said to satisfy the d-dimension property if
there is a positive integer d such that

i
(
V dk ∩ S1(0)

)
= k

for all dk-dimensional subspaces V dk ∈ Σ such that V dk ∩Fix(G) = {0}, where
S1(0) is the unit sphere in Z.

Suppose U and V are G-invariant closed subspaces of Z such that Z = U⊕V ,
where V is infinite dimensional and

V =
∞⋃
j=1

Vj ,

where Vj is a dnj-dimensional G-invariant subspaces of V , j = 1, 2, . . . , and
V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · . Let

Zj = U ⊕ Vj
and for all A ∈ Σ, let

Aj = A ∩ Zj .

Definition 2.4. Let i be an index theory satisfying the d-dimension property.
A limit index with respect to (Zj) induced by i is a mapping

i∞ :
∑
→ Z ∪ {−∞; +∞}

given by i∞(A) = lim supj→∞(i(Aj)− nj).
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Proposition 2.5. Let A,B ∈ Σ. Then i∞ satisfies:

(1) A = ∅ ⇒ i∞ = −∞;
(2) (Monotonicity) A ⊂ B ⇒ i∞(A) ≤ i∞(B);
(3) (Subadditivity) i∞(A ∪B) ≤ i∞(A) + i∞(B);
(4) If V ∩ Fix(G) = {0}, then i∞(Sρ(0) ∩ V ) = 0, where Sρ(0) = {z ∈

Z : ‖z‖ = ρ};
(5) If Y0 and Ỹ0 are G-invariant closed subspaces of V such that V = Y0⊕

Ỹ0, Ỹ0 ⊂ Vj0 for some j0 and dim Ỹ0 = dm, then i∞(Sρ(0)∩Y0) ≥ −m.

Definition 2.6. A functional J ∈ C1(Z,R) is said to satisfy the condition
(PS)∗c with respect to (Zn) if any sequence {znk} ⊂ Z, znk ∈ Znk such that

Jnk(znk)→ c, J ′nk(znk)→ 0 as k →∞,

possesses a convergent subsequence, where Znk is the nk-dimension subspace
of Z as in Definition 2.3 and Jnk = J |Znk .

Proposition 2.7 (see [32]). Assume that

(B1) J ∈ C1(Z,R) is G-invariant;
(B2) There exist G-invariant closed subspaces U and V such that V is infi-

nite dimensional and Z = U ⊕ V ;
(B3) There exists a sequence of G-invariant finite-dimensional subspaces

V1 ⊂ V2 ⊂ · · ·Vj ⊂ · · · , dimVj = dnj, such that V =
⋃∞
j=1 Vj ;

(B4) There exists an index theory i on Z satisfying the d-dimension property;

(B5) There exist G-invariant subspaces Y0, Ỹ0, Y1 of V such that V = Y0⊕Ỹ0,

Y1, Ỹ0 ⊂ Vj0 for some j0 and dim Ỹ0 = dm < dk = dimY1;
(B6) There exist α and β, α < β such that J satisfies (PS)∗c for all c ∈ [α, β].
(B7) It holds that

(a) either Fix(G) ⊂ U ⊕ Y1 or Fix(G) ∩ V = {0},
(b) there is ρ > 0 such that for all z ∈ Y0 ∩ Sρ(0), we have J(z) ≥ α,
(c) for all z ∈ U ⊕ Y1, we have J(z) ≤ β.

If i∞ is the limit index corresponding to i, then the numbers

cj := inf
i∞(A)≥j

sup
z∈A

J(u), −k + 1 ≤ j ≤ −m,

are critical values of J , and α ≤ c−k+1 ≤ · · · ≤ c−m ≤ β. Moreover, if c = cl =
· · · = cl+r, r ≥ 0, then i(Kc) ≥ r+1, where Kc = {z ∈ Z : J ′(z) = 0, J(z) = c}.

3. Proof of the main result

In this section, we shall prove Theorem 1.2 using Proposition 2.7. Through-
out this section, we denote by ci general positive real number whose value may
change from line to line. First, we recall the following useful result, the reader
can consult its proof in [16,29].
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Lemma 3.1. Assume 1 ≤ θ1, θ2, θ < +∞, f ∈ C(Ω× R2,R) and

f(x, s, t) ≤ C
(
|s|

θ1
θ + |t|

θ1
θ

)
, ∀(x, s, t) ∈ Ω× R2, C > 0.

Then, for every (u, v) ∈ Lθ1(Ω) × Lθ2(Ω), we have f(·, u, v) ∈ Lθ(Ω) and the
operator T : (u, v) 7→ f(x, u, v) is a continuous map from Lθ1(Ω) × Lθ2(Ω) to
Lθ(Ω).

Now, we turn to prove Theorem 1.2. In order to apply Proposition 2.7, let
us denote E = H2(Ω)∩H1

0 (Ω) and an orthonormal basis {en}∞n=1 for E which
are characterized by the relations 〈ei, ej〉 = δij , δij = 1 if i = j and δij = 0 if
i 6= j. Moreover, we define

H = U ⊕ V, U = {0} × E, V = E × {0},

Y0 = E⊥1 × {0}, V = Y0 ⊕ Ỹ0,

Y1 = Ek0 × {0}, Ek0 = span{e1, . . . , ek0},

then dim(Ỹ0) = 1, dim(Y1) = k0.
Define a group action G = {1, τ} ∼= Z2 by setting τ(u, v) = (−u,−v), then

Fix(G) = {0} × {0} (also denote by {0}). It is clear that U and V are G-

invariant closed subspaces of X, and Y0, Ỹ0 and Y1 are G-invariant subspace of
V . Set∑

= {A ⊂ H\{0} : A is closed in H and (u, v) ∈ A⇒ (−u,−v) ∈ A} .

Define an index γ on
∑

by

γ(A) =


min

{
N ∈ Z : ∃h ∈ C(A,RN\{0}) such that h(−u,−v) = h(u, v)

}
,

0, if A = ∅,
+∞, if such h does not exist.

From [16], we deduce that γ is an index satisfying the properties given in
Definition 2.2. Moreover, γ satisfies the one-dimension property. According to
Definition 2.4 we can obtain a limit index γ∞ with respect to (Hn) from γ.

As we stated at the beginning of the paper, in order to prove the main result,
let us define the functional J : H → R by

J(w) =
1

2

∫
Ω

|∆u|2 dx− 1

2

∫
Ω

|∆v|2 dx

+
1

2
M̂

(∫
Ω

|∇u|2 dx
)
− 1

2
M̂

(∫
Ω

|∇v|2 dx
)

− 1

2∗

∫
Ω

|u|2∗ dx− 1

2∗

∫
Ω

|v|2∗ dx−
∫

Ω

F (x, u, v) dx, w = (u, v) ∈ H,

we then obtain that J ∈ C1(H,R) using Lemma 3.1 and its derivative is given
by

J ′(u, v)(ϕ,ψ) =

∫
Ω

∆u∆ϕdx−
∫

Ω

∆v∆ψ dx
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+M

(∫
Ω

|∇u|2 dx
)∫

Ω

∇u · ∇ϕdx

−M
(∫

Ω

|∇v|2 dx
)∫

Ω

∇v · ∇ψ dx

−
∫

Ω

|u|2∗−2uϕdx−
∫

Ω

|v|2∗−2vψ dx

−
∫

Ω

(Fu(x, u, v)ϕ+ Fv(x, u, v)ψ) dx

for all (u, v), (ϕ,ψ) ∈ H. Moreover, weak solutions of problem (1.1) are exactly
the critical points of the functional J .

Lemma 3.2. Let (M1)-(M2) and (F1)-(F3) hold. Then the functional J
satisfies the local (PS)∗c with

c ∈
(
−∞, 1

2

(
σ

2
− 1

2∗

)
S
N
4 − C̃|Ω|

)
in the following sense: if {wnk} ⊂ H is a sequence such that wnk = (unk , vnk) ∈
Hnk and

(3.1) Jnk(unk , vnk)→ c, J ′nk(unk , vnk)→ 0 as k →∞,

where Jnk = J |Hnk with Hnk = E × Enk . Then {(unk , vnk)} possesses a
subsequence which converges strongly in H to a critical point of the functional
J .

Proof. We first show that {wnk} = {(unk , vnk)} is bounded in H. Indeed, note
that by relation (3.1), conditions (M1) and (F3), we have

ok(1)‖vnk‖E ≥
〈
−J ′nk(unk , vnk), (0, vnk)

〉
=

∫
Ω

|∆vnk |2 dx+M

(∫
Ω

|∇vnk |2 dx
)∫

Ω

|∇vnk |2 dx

+

∫
Ω

|vnk |2∗ dx+

∫
Ω

Fv(x, unk , vnk)vnk dx

≥ min{1,m0}‖vnk‖2E .(3.2)

From relation (3.2), it follows that ‖vnk‖E is bounded. On the other hand,
by relations (1.7), (3.1) and conditions (M1)-(M2), we deduce that

c+ ok(1)‖unk‖E

≥ Jnk(unk , 0)− σ

2

〈
J ′nk(unk , vnk), (unk , 0)

〉
=

1

2

∫
Ω

|∆unk |2 dx+
1

2
M̂

(∫
Ω

|∇unk |2 dx
)
− 1

2∗

∫
Ω

|unk |2∗ dx

−
∫

Ω

F (x, unk , 0) dx− σ

2

∫
Ω

|∆unk |2 dx
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− σ

2
M

(∫
Ω

|∇unk |2 dx
)∫

Ω

|∇unk |2 dx

+
σ

2

∫
Ω

|unk |2∗ dx+
σ

2

∫
Ω

Fu(x, unk , vnk)unk dx

=

(
1

2
− σ

2

)∫
Ω

|∆unk |2 dx+
1

2
M̂

(∫
Ω

|∇unk |2 dx
)

− σ

2
M

(∫
Ω

|∇unk |2 dx
)∫

Ω

|∇unk |2 dx+

(
σ

2
− 1

2∗

)∫
Ω

|unk |2∗ dx

−
∫

Ω

(
F (x, unk , 0)− 1

2∗
Fu(x, unk , vnk)unk

)
dx

≥
(
σ

2
− 1

2∗

)∫
Ω

|unk |2∗ dx−
∫

Ω

(
F (x, unk , 0)− 1

2∗
Fu(x, unk , vnk)unk

)
dx

≥
(
σ

2
− 1

2∗

)∫
Ω

|unk |2∗ dx−
∫

Ω

(
c(ε) + ε|unk |2∗

)
dx

≤
[
σ

2
− 1

2∗
− ε
] ∫

Ω

|unk |2∗ dx− c(ε)|Ω|,

which yields

(3.3)

[
σ

2
− 1

2∗
− ε
] ∫

Ω

|unk |2∗ dx ≤ c(ε)|Ω|+ c+ ok(1)‖unk‖E ,

where | · | denote by Lebesgue measure. Setting ε = 1
2

(
σ
2 −

1
2∗

)
, we get from

(3.3) that

(3.4)

∫
Ω

|unk |2∗ dx ≤ c1 + ok(1)‖unk‖E ,

where ok(1) → 0 and c1 > 0. On the other hand, by (1.6), (3.1) conditions
(M1) and (M2) we have

c+ ok(1)‖unk‖ = J(unk , 0)

=
1

2

∫
Ω

|∆unk |2 dx+
1

2
M̂

(∫
Ω

|∇unk |2 dx
)
− 1

2∗

∫
Ω

|unk |2∗ dx

−
∫

Ω

F (x, unk , 0) dx

≥ 1

2

∫
Ω

|∆unk |2 dx+
m0σ

2

∫
Ω

|∇unk |2 dx−
1

2∗

∫
Ω

|unk |2∗ dx

−
∫

Ω

F (x, unk , 0) dx

≥ 1

2
min{1,m0σ}‖unk‖2E −

(
1

2∗
+ ε

)∫
Ω

|unk |2∗ dx− a(ε)|Ω|.(3.5)
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From (3.4) and (3.5), it implies that {unk} is bounded in E. Hence, ‖wnk‖H
= ‖unk‖E + ‖vnk‖E is bounded.

Next, we prove that {(unk , vnk)} contains a subsequence converging strongly
in H. We note that {vnk} is bounded in E. Hence, up to a subsequence,
vnk ⇀ v weakly in E and vn(x) → v(x) a.e. in Ω. We claim that vnk → v
strongly in E. In fact, using relation (3.1) and conditions (M1), (F3), we have

ok(1) =
〈
−J ′nk(unk , vnk − v), (0, vnk − v)

〉
=

∫
Ω

|∆(vnk − v)|2 dx+M

(∫
Ω

|∇(vnk − v)|2 dx
)∫

Ω

|∇(vnk − v)|2 dx

+

∫
Ω

|vnk − v|2∗ dx+

∫
Ω

Fv(x, unk , vnk − v)(vnk − v) dx

≥ m0‖vnk − v‖2E ,
which implies that vnk → v strongly in E. In the following, we shall prove that
there exists u ∈ E such that unk → u strongly in E.

We know that {unk} is also bounded in E. Hence, up to a subsequence, we
may assume that unk ⇀ u in E, unk → u strongly in Ls(Ω) for 1 ≤ s < 2∗ and
unk(x) → u(x) a.e. x ∈ Ω. Using the Concentration Compactness Principle
due to Lions [21,22], there exist bounded nonnegative measures ν, µ and γ on
RN and some at most countable index set Λ, sequences (xj)j∈Λ ⊂ Ω, (νj)j∈Λ,
(µj)j∈Λ and (γj)j∈Λ in [0,+∞) such that

|unk |2∗ ⇀ ν = |u|2∗ +
∑
j∈Λ

νjδxj ,(3.6)

|∆unk |2 ⇀ µ ≥ |∆u|2 +
∑
j∈Λ

µjδxj , |∇unk |2 ⇀ γ ≥ |∇u|2 +
∑
j∈Λ

γjδxj ,(3.7)

ν
2
2∗
j ≤ µj

S
(3.8)

for all j ∈ Λ, where δxj is the Dirac mass at xj ∈ Ω, where S is given by (1.9).
Consider φ ∈ C∞0 (Ω, [0, 1]) such that φ ≡ 1 on B1(0), φ ≡ 0 on Ω\B2(0),

|∇φ|∞ ≤ 2 and |∆φ|∞ ≤ 2. For each j ∈ Λ and ε > 0, let us define φj,ε =

φ
(
x−xj
ε

)
, we have that {unkφj,ε} is bounded in the space E, it then follows

from (3.1) that J ′nk(unk , vnk)(unkφj,ε, 0)→ 0 as k →∞, that is,

J ′nk(unk , vnk)(unkφj,ε, 0) =

∫
Ω

∆unk∆(unkφj,ε) dx

+M

(∫
Ω

|∇unk |2 dx
)∫

Ω

∇unk · ∇(unkφj,ε) dx(3.9)

−
∫

Ω

|unk |2∗−2unk(unkφj,ε) dx

−
∫

Ω

Fu(x, unk , vnk)(unkφj,ε) dx→ 0 as k →∞.
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It is noticed that

∆(unkφj,ε) =

n∑
i=1

∂2

∂x2
i

(unkφj,ε)

=

n∑
i=1

∂

∂xi

(
∂unk
∂xi

φj,ε + unk
∂φj,ε
∂xi

)

=

n∑
i=1

[
∂2unk
∂2xi

φj,ε +
∂unk
∂xi

.
∂φj,ε
∂xi

+
∂unk
∂xi

.
∂φj,ε
∂xi

+ unk .
∂2φj,ε
∂2xi

]

=

n∑
i=1

[
∂2unk
∂2xi

φj,ε + 2
∂unk
∂xi

.
∂φj,ε
∂xi

+ unk .
∂2φj,ε
∂2xi

]
= ∆unkφj,ε + 2∇unk · ∇φj,ε + unk∆φj,ε.

Hence, relation (3.9) gives us∫
Ω

(unk∆unk∆φj,ε + 2∆unk(∇unk · ∇φj,ε)) dx

+M

(∫
Ω

|∇unk |2 dx
)∫

Ω

unk∇unk · ∇φj,ε dx

= −
∫

Ω

|∆unk |2φj,ε dx−M
(∫

Ω

|∇unk |2 dx
)∫

Ω

|∇unk |2φj,ε dx(3.10)

+

∫
Ω

|unk |2∗φj,ε dx+

∫
Ω

Fu(x, unk , vnk)unkφj,ε dx+ ok(1).

First, using the Hölder inequality and the boundedness of the sequence {unk}
in E, we deduce that∣∣∣∣∫

Ω

unk∇unk · ∇φj,ε dx
∣∣∣∣

≤
∫
B2ε(xj)∩Ω

|∇unk ||unk ||∇φj,ε| dx

≤

(∫
B2ε(xj)∩Ω

|∇unk |2 dx

) 1
2
(∫

B2ε(xj)∩Ω

|unk |2|∇φj,ε|2 dx

) 1
2

≤ c2

(∫
B2ε(xj)∩Ω

|unk |2|∇φj,ε|2 dx

) 1
2

≤ c2

(∫
B2ε(xj)∩Ω

|unk |
2N
N−2 dx

)N−2
2N
(∫

B2ε(xj)∩Ω

|∇φj,ε|N dx

) 1
N

≤ c3

(∫
B2ε(xj)∩Ω

|unk |
2N
N−2 dx

)N−2
2N

→ 0 as k →∞, ε→ 0.(3.11)
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Since {unk} is bounded in E, we may assume that
∫

Ω
|∇unk |2 dx → t1 ≥ 0

as n→∞. Observing that M(t) is continuous, we then have

M

(∫
Ω

|∇unk |2 dx
)
→M(t1) ≥ m0 > 0 as k →∞.

Hence, by (3.11),

(3.12) M

(∫
Ω

|∇unk |2 dx
)∫

Ω

unk∇unk · ∇φj,ε dx→ 0 as k →∞, ε→ 0.

Similarly, we also have∣∣∣∣∫
Ω

unk∆unk∆φj,ε dx

∣∣∣∣
=

∣∣∣∣∣
∫
B2ε(xj)∩Ω

∆unk(unk∆φj,ε) dx

∣∣∣∣∣
≤
∫
B2ε(xj)∩Ω

|∆unk ||unk ||∆φj,ε| dx

≤

(∫
B2ε(xj)∩Ω

|∆unk |2 dx

) 1
2
(∫

B2ε(xj)∩Ω

|unk |2|∆φj,ε|2 dx

) 1
2

≤ c4

(∫
B2ε(xj)∩Ω

|unk |2|∆φj,ε|2 dx

) 1
2

≤ c4

(∫
B2ε(xj)∩Ω

|unk |2∗ dx

) 1
2∗
(∫

B2ε(xj)∩Ω

|∆φj,ε|
N
2 dx

) 2
N

≤ c5

(∫
B2ε(xj)∩Ω

|unk |2∗ dx

) 1
2∗

→ 0 as k →∞, ε→ 0(3.13)

and ∣∣∣∣∫
Ω

∆unk(∇unk · ∇φj,ε) dx
∣∣∣∣

=

∣∣∣∣∣
∫
B2ε(xj)∩Ω

∆unk(∇unk · ∇φj,ε) dx

∣∣∣∣∣
≤
∫
B2ε(xj)∩Ω

|∆unk ||∇unk ||∇φj,ε| dx

≤

(∫
B2ε(xj)∩Ω

|∆unk |p dx

) 1
2
(∫

B2ε(xj)∩Ω

|∇unk |2|∇φj,ε|2 dx

) 1
2
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≤ c6

(∫
B2ε(xj)∩Ω

|∇unk |2|∇φj,ε|2 dx

) 1
2

≤ c6

(∫
B2ε(xj)∩Ω

|∇unk |
2N
N−2 dx

)N−2
2N
(∫

B2ε(xj)∩Ω

|∇φj,ε|N dx

) 1
N

≤ c7

(∫
B2ε(xj)∩Ω

|∇unk |
2N
N−2 dx

)N−2
2N

→ 0 as k →∞, ε→ 0.(3.14)

On the other hand, by the compactness lemma of Strauss, the boundedness
of {un} in E and Sobolev embedding, it follows that

(3.15)

∫
Ω

Fu(x, unk , vnk)unkφj,ε dx = 0 as k →∞, ε→ 0.

By relations (3.12)-(3.15), letting k →∞ in (3.10), we deduce that∫
Ω

φj,ε dµ ≤
∫

Ω

φj,ε dµ+m0

∫
Ω

φj,ε dγ ≤
∫

Ω

φj,ε dν + oε(1).

Letting ε→ 0 and using the standard theory of Radon measures, we conclude
that νj ≥ µj . Using (3.8) we have

Sν
2
2∗
j ≤ µj ≤ νj ,

which implies that

(3.16) νj = 0 or νj ≥ S
N
4 for all j ∈ Λ.

From the conditions (M1), (M2) and relations (1.7), (3.1), we get

ok(1) + c = Jnk(unk , 0)− σ

2
J ′nk(unk , vnk)(unk , 0)

=
1

2

∫
Ω

|∆unk |2 dx+
1

2
M̂

(∫
Ω

|∇unk |2 dx
)

− 1

2∗

∫
Ω

|unk |2∗ dx−
∫

Ω

F (x, unk , 0) dx

− σ

2

∫
Ω

|∆unk |2 dx−
σ

2
M

(∫
Ω

|∇unk |2 dx
)∫

Ω

|∇unk |2 dx

+
σ

2

∫
Ω

|unk |2∗ dx+
σ

2

∫
Ω

Fu(x, unk , vnk)unk dx

≥
(
σ

2
− 1

2∗

)∫
Ω

|unk |2∗ dx

−
∫

Ω

(
F (x, unk , 0)− σ

2
Fu(x, unk , vnk)unk

)
dx

≥
(
σ

2
− 1

2∗

)∫
Ω

|unk |2∗ dx−
∫

Ω

(
c(ε) + ε|unk |2∗

)
dx
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≥
[
σ

2
− 1

2∗
− ε
] ∫

Ω

|unk |2∗ dx− c(ε)|Ω|

≥ 1

2

(
σ

2
− 1

2∗

)∫
Ω

|unk |2∗ dx− C̃|Ω|,(3.17)

where ε = 1
2

(
σ
2 −

1
2∗

)
and C̃ > 0 is given by the hypothesis (F4). Letting

k →∞ in (3.17), we get

(3.18) c ≥ 1

2

(
σ

2
− 1

2∗

)
lim
k→∞

∫
Ω

|unk |2∗ dx− C̃|Ω|.

Using (3.6), it implies that

lim
k→∞

∫
Ω

|unk |2∗ dx =

∫
Ω

|u|2∗ dx+
∑
j∈Λ

νj ≥ νj , ∀j ∈ Λ,

if νs > 0 for some s ∈ Λ, we deduce from relations (3.16) and (3.18) that

c ≥ 1

2

(
σ

2
− 1

2∗

)
S
N
4 − C̃|Ω|,

which is an absurd. This leads to the fact that νj = 0 for any j ∈ Λ and

(3.19) lim
k→∞

∫
Ω

|unk |2∗ dx =

∫
Ω

|u|2∗ dx

and by the Brezis-Lieb lemma [4], the sequence {unk}k converges strongly to
u in L2∗(Ω). For this reason, by the Hölder inequality we deduce that∣∣∣∣∫

Ω

(
|unk |2∗−2unk − |u|2∗−2u

)
(unk − u) dx

∣∣∣∣
≤
∫

Ω

(
|unk |2∗−1 + |u|2∗−1

)
|unk − u| dx

≤
(
|unk |

2∗−1
2∗

+ |u|2∗−1
2∗

)
|unk − u|2∗ → 0 as k →∞(3.20)

and ∣∣∣∣∫
Ω

(Fu(x, unk , vnk)− Fu(x, u, 0)) (unk − u) dx

∣∣∣∣
≤
∫

Ω

(|Fu(x, unk , vnk)|+ |Fu(x, u, 0)|) |unk − u| dx

≤ c8

∫
Ω

(1 + |unk |2∗−1 + |u|2∗−1)|unk − u| dx

≤ c8

(
|Ω|

2∗−1
2∗ + |unk |

2∗−1
2∗

+ |u|2∗−1
2∗

)
|unk − u|2∗ → 0 as k →∞.(3.21)

Since the sequence {unk} converges weakly to u in E, the sequence {unk−u}
is bounded in E and 〈J ′nk(unk , vnk)− J ′nk(u, 0), (unk − u, 0)〉 → 0 as k → ∞,
that is,

ok(1) = 〈J ′nk(unk , vnk)− J ′nk(u, 0), (unk − u, 0)〉
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=

∫
Ω

|∆(unk − u)|2 dx+M

(∫
Ω

|∇unk |2 dx
)∫

Ω

|∇(unk − u)|2 dx

+

[
M

(∫
Ω

|∇unk |2 dx
)
−M

(∫
Ω

|∇u|2 dx
)]∫

Ω

∇u · ∇(unk − u) dx

−
∫

Ω

(
|unk |2∗−2unk − |u|2∗−2u

)
(unk − u) dx

−
∫

Ω

[Fu(x, unk , vnk)− Fu(x, u, 0)] (unk − u) dx.(3.22)

From relations (3.19)-(3.22), we have

lim
k→∞

[∫
Ω

|∆(unk − u)|2 dx+M

(∫
Ω

|∇unk |2 dx
)∫

Ω

|∇(unk − u)|2 dx
]

= 0,

and by (M1) it follows that

(3.23) lim
n→∞

∫
Ω

(
|∆(unk − u)|2 + |∇(unk − u)|2

)
dx = 0.

From relation (3.3), the sequence {unk} converges strongly to u in E and

thus, J satisfies the (PS)∗c condition for c ∈
(

0, 1
2

(
σ
2 −

1
2∗

)
S
N
4 − C̃|Ω|

)
. �

Proof of Theorem 1.2. Now, we are in the position to verify the conditions of
Proposition 2.7. Obviously, conditions (B1), (B2), (B4) in Proposition 2.7
are satisfied. Set Vj = Ej = span{e1, e2, . . . , ej}, then condition (B3) is also

satisfied. Since 1 = dim(Ỹ0) < k0 = dim(Y1), (B5) is satisfied. In the following
we verify the conditions in (B7). Because Fix(G) ∩ V = {0}, we deduce that
(a) of (B7) holds. It remains to verify (b), (c) of (B7). Let us choose a real
number α such that

(3.24) α < min

{
0,

(
1

2
− 1

2∗

)
(min{1, σm0}S)

N
4

(1 + ε)
N−4

4

− a
(
ε

2∗

)
|Ω|

}
.

(i) If (u, 0) ∈ Y0 ∩ Sρ (where ρ is to be determined), then by (1.6) and
(M1)-(M2), we obtain

J(u, 0) =
1

2

∫
Ω

|∆u|2 dx+
1

2
M̂

(∫
Ω

|∇u|2 dx
)

− 1

2∗

∫
Ω

|u|2∗ dx−
∫

Ω

F (x, u, 0) dx

≥ 1

2

∫
Ω

|∆u|2 dx+
σ

2
M

(∫
Ω

|∇u|2 dx
)∫

Ω

|∇u|2 dx− 1

2∗

∫
Ω

|u|2∗ dx

−
∫

Ω

[
a

(
ε

2∗

)
+

ε

2∗
|u|2∗

]
dx

≥ 1

2
min{1, σm0}‖u‖pE −

1

2∗S
2∗
2

(1 + ε) ‖u‖2∗E − a
(
ε

2∗

)
|Ω|.
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Let us consider the function h : (0,+∞)→ R given by

h(t) =
1

2
min{1, σm0}t2 −

1

2∗S
2∗
2

(1 + ε) t2∗ − a
(
ε

2∗

)
|Ω|,

we have limt→0+ h(t) = −a(ε)|Ω|, limt→+∞ h(t) = −∞ and

h′(t) = min{1, σm0}t−
1

S
2∗
2

(1 + ε) t2∗−1 = 0

when

t = t0 =

(
min{1, σm0}S

2∗
2

1 + ε

) 1
2∗−2

and

h(t0) =

(
1

2
− 1

2∗

)
(min{1, σm0}S)

N
4

(1 + ε)
N−4

4

− a
(
ε

2∗

)
|Ω|,

which gives

max
t∈(0,+∞)

h(t) =

(
1

2
− 1

2∗

)
(min{1, σm0}S)

N
4

(1 + ε)
N−4

4

− a
(
ε

2∗

)
|Ω|,

so that there exists ρ > 0 such that J(u, 0) ≥ α for every ‖u‖E = ρ with α as
stated in (3.24), that is (b) of (B7) holds.

(ii) First of all, by condition (M2), we obtain that

(3.25) M̂(t) ≤ M̂(t2)

t
1
σ
0

t
1
σ = c9t

1
σ , ∀t ≥ t2 > 0.

From (3.25), condition (F4) and the definition of the functional J , it follows
that for each (u, v) ∈ U ⊕ Y1,

J(u, v) =
1

2

∫
Ω

|∆u|2 dx−
∫

Ω

|∇v|2 dx

+
1

2
M̂

(∫
Ω

|∇u|2 dx
)
− 1

p
M̂

(∫
Ω

|∇v|2 dx
)

− 1

2∗

∫
Ω

|u|2∗ dx− 1

2∗

∫
Ω

|v|2∗ dx−
∫

Ω

F (x, u, v) dx

≤ 1

2

∫
Ω

|∆u|2 dx+
c9
2

(∫
Ω

|∇u|2 dx
) 2
σ

−
∫

Ω

(L|u|µ − ξ) dx

≤ 1

2
‖u‖2E +

c9
2
‖u‖

2
σ

E − L|u|
µ
µ + ξ|Ω|.

Since all norms are equivalent on the finite-dimensional space Y1, there exists
a constant c10 > 0 such that ‖u‖E ≤ c10|u|µ and thus,

J(u, v) ≤ c210

2
|u|2µ +

c9c
2
σ
10

2
|u|

2
σ
µ − L|u|µµ + ξ|Ω|
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=

(
c210

2
− L

2
|u|µ−2

µ

)
|u|2µ +

(
c9c

2
σ
10

2
− L

2
|u|µ−

2
σ

µ

)
|u|

2
σ
µ + ξ|Ω|.(3.26)

Put r = min
{∫

Ω
|u|µ dx : u ∈ Ek0

}
, where Ek0 = span{e1, e2, . . . , ek0}. By

taking

L ≥ max

{
c210

r
2−µ
µ

,
c9c

2
σ
10

r
µ−2/σ
µ

}
,

we deduce that

(3.27)

(
c210

2
− L

2
|u|µ−2

µ

)
|u|2µ +

(
c9c

2
σ
10

2
− L

2
|u|µ−

2
σ

µ

)
|u|

2
σ
µ ≤ 0.

It follows from relations (3.26)-(3.27) and (F4) that

J(u, v) ≤ ξ|Ω| < min

{
0,

1

2

(
σ

2
− 1

2∗

)
S
N
4 − C̃|Ω|

}
.

Let β = ξ|Ω|, so we get (c) in (B7). By Lemma 3.2, for any c ∈ [α, β], the
functional J satisfies the condition of (PS)∗c , then condition (B6) in Proposition
2.7 holds. Finally, according to Proposition 2.7, we conclude that

cj = inf
i∞(A)≥j

sup
w=(u,v)∈A

J(w), −k0 + 1 ≤ j ≤ −1,

are critical values of J , α ≤ c−k0+1 ≤ · · · ≤ c−1 ≤ β < 0 and J has at least
k0 − 1 pairs critical points. The proof of Theorem 1.2 is now complete. �
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[10] F. J. S. A. Corrêa and A. C. R. Costa, On a p(x)-Kirchhoff equation with critical
exponent and an additional nonlocal term, Funkcial. Ekvac. 58 (2015), no. 3, 321–345.

https://doi.org/10.1619/fesi.58.321
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