• Title/Summary/Keyword: Kirchhoff equations

Search Result 59, Processing Time 0.022 seconds

ON KIRCHHOFF TYPE EQUATIONS WITH SINGULAR NONLINEARITIES, SUB-CRITICAL AND CRITICAL EXPONENT

  • Mohammed El Mokhtar Ould El Mokhtar;Saleh Fahad Aljurbua
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.419-434
    • /
    • 2024
  • This paper is devoted to the existence of solutions for Kirchhoff type equations with singular nonlinearities, sub-critical and critical exponent. By using the Nehari manifold and Maximum principle theorem, the existence of at least two distinct positive solutions is obtained.

SOME QUASILINEAR HYPERBOLIC EQUATIONS AND YOSICA APPROXIMATIONS

  • Park, Jong-Yeoul;Jung, Il-Hyo;Kang, Yong-Han
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.505-516
    • /
    • 2001
  • We show the existence and uniqueness of solutions for the Cauchy problem for nonlinear evolution equations with the strong damping: ${\upsilon}"(t)-M(|{\nablauu}(t)|^2){\triangle}u(t)-{\delta}{\triangle}u'(t)=f(t)$. As an application, a Kirchhoff model with viscosity is given.

  • PDF

ON SOME p(x)-KIRCHHOFF TYPE EQUATIONS WITH WEIGHTS

  • Chung, Nguyen Thanh
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.113-128
    • /
    • 2014
  • Consider a class of p(x)-Kirchhoff type equations of the form $$\left\{-M\left({\int}_{\Omega}\;\frac{1}{p(x)}{\mid}{\nabla}u{\mid}^{p(x)}\;dx\right)\;div\;({\mid}{\nabla}u{\mid}^{p(x)-2}{\nabla}u)={\lambda}V(x){\mid}u{\mid}^{q(x)-2}u\;in\;{\Omega},\\u=0\;on\;{\partial}{\Omega},$$ where p(x), $q(x){\in}C({\bar{\Omega}})$ with 1 < $p^-\;:=inf_{\Omega}\;p(x){\leq}p^+\;:=sup_{\Omega}p(x)$ < N, $M:{\mathbb{R}}^+{\rightarrow}{\mathbb{R}}^+$ is a continuous function that may be degenerate at zero, ${\lambda}$ is a positive parameter. Using variational method, we obtain some existence and multiplicity results for such problem in two cases when the weight function V (x) may change sign or not.

ON A CLASS OF NONCOOPERATIVE FOURTH-ORDER ELLIPTIC SYSTEMS WITH NONLOCAL TERMS AND CRITICAL GROWTH

  • Chung, Nguyen Thanh
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1419-1439
    • /
    • 2019
  • In this paper, we consider a class of noncooperative fourth-order elliptic systems involving nonlocal terms and critical growth in a bounded domain. With the help of Limit Index Theory due to Li [32] combined with the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity. Our results significantly complement and improve some recent results on the existence of solutions for fourth-order elliptic equations and Kirchhoff type problems with critical growth.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR NONLINEAR SCHRÖDINGER-KIRCHHOFF-TYPE EQUATIONS

  • CHEN, HAIBO;LIU, HONGLIANG;XU, LIPING
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.201-215
    • /
    • 2016
  • In this paper, we consider the following $Schr{\ddot{o}}dinger$-Kirchhoff-type equations $\[a+b\({\int}_{{\mathbb{R}}^N}({\mid}{\nabla}u{\mid}^2+V(x){\mid}u{\mid}^2)dx\)\][-{\Delta}u+V(x)u]=f(x,u)$, in ${\mathbb{R}}^N$. Under certain assumptions on V and f, some new criteria on the existence and multiplicity of nontrivial solutions are established by the Morse theory with local linking and the genus properties in critical point theory. Some results from the previously literature are significantly extended and complemented.

BIHARMONIC-KIRCHHOFF TYPE EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT WITH SINGULAR TERM

  • Tahri, Kamel;Yazid, Fares
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.247-256
    • /
    • 2021
  • Using variational methods, we show the existence of a unique weak solution of the following singular biharmonic problems of Kirchhoff type involving critical Sobolev exponent: $$(\mathcal{P}_{\lambda})\;\{\begin{array}{lll}{\Delta}^2u-(a{\int}_{\Omega}{\mid}{\nabla}u{\mid}^2dx+b){\Delta}u+cu=f(x){\mid}u{\mid}^{-{\gamma}}-{\lambda}{\mid}u{\mid}^{p-2}u&&\text{ in }{\Omega},\\{\Delta}u=u=0&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω is a smooth bounded domain of ℝn (n ≥ 5), ∆2 is the biharmonic operator, and ∇u denotes the spatial gradient of u and 0 < γ < 1, λ > 0, 0 < p ≤ 2# and a, b, c are three positive constants with a + b > 0 and f belongs to a given Lebesgue space.

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Large deflections of spatial variable-arc-length elastica under terminal forces

  • Phungpaingam, Boonchai;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.501-516
    • /
    • 2009
  • This paper aims to study the large deflections of variable-arc-length elastica subjected to the terminal forces (e.g., axial force and torque). Based on Kirchhoff's rod theory and with help of Euler parameters, the set of nonlinear governing differential equations which free from the effect of singularity are established together with boundary conditions. The system of nonlinear differential equations is solved by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance ($10^{-5}$). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent order. The other process is performed by reversing the sequence of loading in the first process. The results are interpreted by observing the load-deflection diagram and the stability properties are predicted via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon, secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to behavior of elastica.