SOME QUASILINEAR HYPERBOLIC EQUATIONS AND YOSICA APPROXIMATIONS

  • Park, Jong-Yeoul (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY) ;
  • Jung, Il-Hyo (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY) ;
  • Kang, Yong-Han (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY)
  • Published : 2001.08.01

Abstract

We show the existence and uniqueness of solutions for the Cauchy problem for nonlinear evolution equations with the strong damping: ${\upsilon}"(t)-M(|{\nablauu}(t)|^2){\triangle}u(t)-{\delta}{\triangle}u'(t)=f(t)$. As an application, a Kirchhoff model with viscosity is given.

Keywords

References

  1. J. Math. Anal. Appl. v.226 Existence and exponential decay for a Kirchhoff-Carrier model with viscosity M. M. Cavalcanti;V. N. Domingos Cavalcanti;J. S. Prates Filho;J. A. Soriano
  2. Proc. Roy. Soc. v.82 The initial value problem for a nonlinear semi-infinite string R. W. Dickey
  3. Diff. v.6 A quasilinear integrodifferential equation of hyperbolic type J. Dix;R. Torrejon
  4. Nonlinear Analysis v.15 no.5 Yosida approximation and nonlinear hyperbolic equation R. Ikehata;N. Okazawa
  5. Marcel Dekker Stability Analysis of Nonlinear Systems V. Lakshmikantham;S. Leela;A. A. Martynyuk
  6. Memorias de Matematica da Universidade Federal do Rio de Janeiro On classical solutions of a quatilinear hyperbolic equation G. P. Menzala
  7. Adv. Math. Sci. Appl. v.4 Asymptotic behaviors of solutions of some nonlinear oscillation equations with strong damping K. Nishihara;K. Ono
  8. Math. Methods Appl. Sci. v.20 On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation K. Ono
  9. Indian J. pure appl. Math. v.30 no.11 On a class of quasilinear hyperbolic equations and Yosida approximations J. Y. Park;I. H. Jung;
  10. submitted. Generalized quasilinear hyperbolic equations and Yosida approximations J. Y. Park;I. H. Jung;Y. H. Kang
  11. Mat. Sb. v.25 On a class of quasilinear hyperbolic equations S. I. Pohozaev
  12. Pitman Equations of Evolution H. Tanabe