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EXISTENCE AND MULTIPLICITY OF

SOLUTIONS FOR NONLINEAR

SCHRÖDINGER-KIRCHHOFF-TYPE EQUATIONS

Haibo Chen, Hongliang Liu, and Liping Xu

Abstract. In this paper, we consider the following Schrödinger-Kirch-
hoff-type equations
[

a + b

(∫

RN

(|∇u|2 + V (x)|u|2)dx

)]

[−∆u+ V (x)u] = f(x, u), in R
N .

Under certain assumptions on V and f , some new criteria on the exis-
tence and multiplicity of nontrivial solutions are established by the Morse
theory with local linking and the genus properties in critical point theory.
Some results from the previously literature are significantly extended and
complemented.

1. Introduction and main results

In this paper, we investigate the existence and multiplicity of solutions to
the following Schrödinger-Kirchhoff-type equations

(1.1)

[
a+ b

(∫

RN

(|∇u|2 + V (x)|u|2)dx

)]
[−∆u+ V (x)u] = f(x, u), in R

N ,

where N ≥ 2, a, b are positive constants, and the potential V satisfies the
following condition:

(V ) V (x) ∈ C(RN ,R) satisfies inf
RN

V (x) ≥ α > 0.

Problem (1.1) is related to the stationary analogue of the equation

utt −

(
a+ b

∫

Ω

|∇u|2
)
△u = h(x, u),
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which was presented by Kirchhoff [10] to describe the transversal oscillations
of a stretched string, where u denotes the displacement, h is the external force,
b represents the initial tension, and a is related to the intrinsic properties of
the string.

In recent years, the following Kirchhoff type problem

(1.2) −

(
a+ b

∫

RN

|∇u|2dx

)
∆u+ λV (x)u = f(x, u), in R

N

has been widely studied by many authors since Lions [13] proposed an abstract
framework. More precisely, Wu in [23] studied the existence of nontrivial so-
lutions and infinitely many high energy solutions of problem (1.2) by using
a symmetric mountain pass theorem. Liu and He in [14] also investigated
the existence of infinitely many high energy solutions of problem (1.2) un-
der superlinear case by variant version of fountain theorem. In [22], Sun and
Wu investigated the existence and the non-existence of nontrivial solutions of
problem (1.2) by using variational methods and explored the concentration of
solutions. When N = 3, Li and Ye considered problem (1.2) with pure power
nonlinearities f(x, u) = |u|p−1u in R

3. By using a monotonicity trick and a new
version of global compactness lemma, they get that the problem has a positive
ground state solution that the result can be viewed as a partial extension of [9]
where the authors studied the existence and concentration behavior of positive
solutions of problem (1.2). In addition, other interesting results on the related
Kirchhoff equations can be found in [1, 6, 7, 8, 16, 18, 24].

It is worth mentioning that in [12] Li et al. studied the following autonomous
Kirchhoff type problem

(1.3)

(
a+ λ

∫

RN

|∇u|2 + λb

∫

RN

u2dx

)
[−∆u+ bu] = f(u), in R

N ,

where N ≥ 3, a, b are positive constants and λ ≥ 0 is a parameter. They
proved that problem (1.3) has at least one positive solution under the following
condition:

(H1) f ∈ C(R+,R+) and |f(u)| ≤ C(|u| + |u|p−1) for all t ∈ R+ = [0,∞)
and some p ∈ (2, 2∗), where 2∗ = 2N/(N − 2) for N ≥ 3.

Obviously, a question shows up that what will happen if p ∈ (1, 2). This is
what we interested in the present paper. More precisely, the case we consider
in the present paper is that f(x, u) satisfies the following condition.

(f1) f ∈ C(RN ×R,R), and there exist constants 1 < δ1 < δ2 < · · · < δm <

2, and functions ai ∈ L
2

2−δi (RN ,R+), (i = 1, 2, . . . ,m) such that

|f(x, u)| ≤

m∑

i=1

δiai(x)|u|
δi−1.

The Morse theory and genus properties in critical point theory are the useful
tools in looking for the solutions for the variational problem (see, for example [4,
5, 15, 17, 21]). However, to the best of our knowledge, there is no existed works
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dealing with problem (1.1) by combining Morse theory and genus properties
up to now. Motivated by the above facts and the main purpose of this paper is
to study the existence and multiplicity of nontrivial solutions of problem (1.1).
The proofs are based on combining Morse theory with local linking method
and the genus properties in critical point theory.

Now, we are ready to state the main results of this paper.

Theorem 1.1. Let the condition (V ) and (f1) be satisfied and the following

condition holds.

(f2) there exist an open set Ω ⊂ R
N and three constants ζ, η > 0, κ ∈ (1, 2)

such that

F (x, u) ≥ η|u|κ, ∀(x, u) ∈ Ω× [−ζ, ζ],

where and in the sequel F (x, u) =
∫ u

0
f(x, s)ds.

Then problem (1.1) possesses at least one nontrivial solution.

Theorem 1.2. Let the condition (V ) and (f1) be satisfied and the following

condition holds.

(f3) there exist 1 < τ < 2, 0 < c1 < c2 <
a

ςγ2
2
such that

c1|u|
τ ≤ F (x, u) ≤ c2|u|

2 for |u| small,

where ς ≥ 2, γ2 is Sobolev constant.

Then problem (1.1) possesses at least two nontrivial solutions.

Theorem 1.3. Let all the conditions in Theorem 1.1 be satisfied. In addition,

the following condition holds.

(f4) f(x,−u) = −f(x, u), ∀(x, u) ∈ R
N × R.

Then problem (1.1) possesses infinitely many nontrivial solutions.

It is easy to see that (f2) is satisfied if the following condition holds.
(f2′) there exist an open set Ω ⊂ R

3 and three constants ζ, η > 0, κ ∈ (1, 2)
such that

uf(x, u) ≥ η|u|κ, ∀(x, u) ∈ Ω× [−ζ, ζ].

Therefore, by Theorems 1.1 and 1.2, we have the following corollaries.

Corollary 1.1. In Theorem 1.1 and Theorem 1.3, if assumption (f2) is re-

played by (f2′), then the conclusions still hold.

Corollary 1.2. Suppose that V satisfies (V ) and the following conditions hold.

(f5) F (x, u) = q(x)G(u), where G ∈ C1(R × R) and q ∈ C(RN × R) ∩

L
2

2−κ1 (RN×R), κ1 ∈ (1, 2) is a constant, such that q(x0) > 0 for some x0 ∈ R
N ;

(f6) There exist constants m,M > 0 and κ0 ∈ (1, 2) such that

m|u|κ0 ≤ G(u) ≤M |u|κ1, ∀(x, u) ∈ R
N × R.

Then problem (1.1) possesses at least one nontrivial solution.
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Corollary 1.3. Suppose that all the conditions in Corollary 1.1 hold. In ad-

dition, the following condition satisfies.

(f7) G(−u) = G(u), ∀u ∈ R.
Then problem (1.1) possesses infinitely many nontrivial solutions.

The sequel of this paper is organized as follows. In Section 2, some prelimi-
nary results are presented. We give the proof of our main results in Section 3.
Finally, one example is given to illustrate our results.

2. Preliminaries

Throughout this paper, we work in the following Hilbert space

E :=

{
u ∈ H1(RN ) :

∫

RN

[|∇u|2 + V (x)|u|2]dx < +∞

}
,

which equipped with the inner product

〈u, v〉 =

∫

RN

[∇u∇v + V (x)uv]dx, u, v ∈ E

and the associated norm

‖u‖ =

(∫

RN

[|∇u|2 + V (x)u2]dx

) 1
2

, u ∈ E.

As usual, for 1 ≤ p < +∞, we let

‖u‖p =

(∫

RN

|u|pdx

) 1
p

, u ∈ Lp(RN )

and
‖u‖∞ = ess sup |u(x)|, u ∈ L∞(RN ).

Evidently, E is continuously embedded into Lp(RN ) for 2 ≤ p ≤ 2∗ under the
condition (V ), that is, there exists γp > 0 such that

(2.1) ‖u‖p ≤ γp‖u‖, ∀u ∈ E, p ∈ [2, 2∗].

Definition 2.1. A function u ∈ E is said to be a (weak) solution of (1.1) if
for any v ∈ E, there holds

(2.2) a〈u, v〉+ b‖u‖2〈u, v〉 =

∫

RN

f(x, u)vdx.

Lemma 2.1. Assume that (V ) and (f1) hold. Then the functional J(u) : E →
R defined by

(2.3) J(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫

RN

F (x, u)dx

is well defined and of class C1(E,R) and

(2.4) 〈J ′(u), v〉 = a〈u, v〉+ b‖u‖2〈u, v〉 −

∫

RN

f(x, u)vdx.

Furthermore, the critical points of J(u) in E are the solutions of (1.1).
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Proof. It follows from (f1) that

(2.5) |F (x, u)| ≤

m∑

i=1

ai(x)|u|
δi .

By (V ), (2.5) and the Hölder inequality, for any u ∈ E, we get that

(2.6)

∫

RN

|F (x, u)|dx ≤
m∑

i=1

∫

RN

ai(x)|u|
δidx

≤

m∑

i=1

∫

RN

(
V (x)

α
)

δi
2 ai(x)|u|

δidx

≤

m∑

i=1

α−
δi
2 ‖ai(x)‖ 2

2−δi

(∫

RN

V (x)|u|2dx

) δi
2

≤ C1

m∑

i=1

‖u‖δi.

Thus, J(u) is well defined on E by (2.3) and (2.6).
Now, we show that (2.4) holds. By (f1), for any u, v ∈ E, l ∈ (0, 1),

θ(x) : RN → (0, 1) and the Hölder inequality, we obtain that

∫

RN

max
l∈(0,1)

|f(x, u(x) + lθ(x)v(x))v(x)|dx

(2.7)

=

∫

RN

max
l∈(0,1)

|f(x, u(x) + lθ(x)v(x))||v(x)|dx

≤

m∑

i=1

δi

∫

RN

ai(x)|u(x) + θ(x)v(x)|δi−1|v(x)|dx

≤ C2

m∑

i=1

(∫

RN

|ai|
2

2−δi dx

) 2−δi
2
(∫

RN

V (x)|u(x)|2dx

) δi−1

2
(∫

RN

V (x)|v(x)|2dx

) 1
2

+ C2

m∑

i=1

(∫

RN

|ai|
2

2−δi dx

) 2−δi
2
(∫

RN

V (x)|v(x)|2dx

) δi
2

≤ C2

m∑

i=1

‖ai‖ 2
2−δi

(‖u‖δi−1 + ‖v‖δi−1)‖v‖ < +∞.

Then by (2.3), (2.7) and Lebesgue’s Dominated Convergence Theorem, we have

〈J ′(u), v〉 = lim
l→0+

J(u + lv)− J(u)

l

=

[
a+ b

(∫

RN

(|∇u|2 + V (x)|u|2)dx

)]∫

RN

[∇u∇v + V (x)uv]dx
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− lim
l→0+

1

l

∫

RN

[F (x, u(x) + lv(x))− F (x, u(x))]dx

=

[
a+ b

(∫

RN

(|∇u|2 + V (x)|u|2)dx

)]∫

RN

[∇u∇v + V (x)uv]dx

− lim
l→0+

∫

RN

f(x, u(x) + θ(x)lv(x))v(x)dx

=

[
a+ b

(∫

RN

(|∇u|2 + V (x)|u|2)dx

)]∫

RN

[∇u∇v + V (x)uv]dx

−

∫

RN

f(x, u(x))v(x)dx,

which implies that (2.4) holds. Moreover, by a standard argument, it is easy
to show that the critical points of J(u) in E are the solutions of problem (1.1),
see for example [3].

In what follows, we show that J ′(u) is continuous. According to (2.3), it
suffices to show that

(2.8) Φ′
,

∫

RN

f(x, u)vdx

is continuous. Let uk → u in E. Then

(2.9) uk → u, in L2(RN ), uk → u a.e. in R
N .

We show that

(2.10)

∫

RN

|f(x, uk)− f(x, u)|2dx→ 0, as k → +∞.

To prove (2.10), arguing by contradiction, suppose that there exists a con-
stant ε0 > 0 and a subsequence (also denotes {uk}) such that

(2.11)

∫

RN

|f(x, uk)− f(x, u)|2dx ≥ ε0, as k → +∞.

Since uk → u in L2(RN ), passing to a subsequence if necessary we can assume

that
∑∞

i=1 ‖uk − u‖22 < +∞. Set w(x) = [
∑∞

i=1 |uk − u|2]
1
2 , x ∈ R

N , then
w(x) ∈ L2(RN ). For all k ∈ N and by (f1), we have

|f(x, uk(x))− f(x, u(x))|2 ≤ 2|f(x, uk(x))|
2 + 2|f(x, u(x))|2(2.12)

≤ C3

m∑

i=1

|ai(x)|
2[|uk(x)|

2δi−2 + |u(x)|2δi−2]

≤ C3

m∑

i=1

|ai(x)|
2[|w(x)|2δi−2 + |u(x)|2δi−2]

:= g(x), a.e. in R
N
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and
∫

RN

g(x)dx = C3

m∑

i=1

∫

RN

|ai(x)|
2[|w(x)|2δi−2 + |u(x)|2δi−2]dx(2.13)

≤ C3

m∑

i=1

‖ai(x)‖
2

2
2−δi

[‖w(x)‖2δi−2
2 + ‖u(x)‖2δi−2

2 ] < +∞.

Then by (2.9), (2.12), (2.13) and Lebesgue’s dominated convergence theorem,
we have

(2.14)

∫

RN

|f(x, uk)− f(x, u)|2dx→ 0, as k → +∞,

which contradicts (2.11). So, (2.10) holds.
By (2.8), (2.14) and the Hölder inequality, for all given v ∈ E, we have

|〈Φ′(uk)− Φ′(u), v〉| = |

∫

RN

[f(x, uk)− f(x, u)]vdx|

≤ C4‖v‖

(∫

RN

|f(x, uk)− f(x, u)|2dx

) 1
2

→ 0,

as k → +∞, which implies the continuity of Φ′. Hence, J ∈ C1(E,R). �

In what follows, we collect some definitions and propositions which are very
useful throughout the present paper and we will use in the next section.

Let E be a Banach space, J(u) ∈ C1(E,R) and c ∈ R. Set

Σ = {A ⊂ E − {0} : A is closed in E and symmetric with respect to 0},

Kc = {u ∈ E : J(u) = c, J ′(u) = 0}, Jc = {u ∈ E : J(u) ≤ c}.

Definition 2.2 (Chang [4]). Let u be an isolated critical point of J with
J(u) = c, for c ∈ R, and let U be a neighborhood of u, containing the unique
critical point. We call

Cq(J, u) := Hq(J
c ∩ U, Jc ∩ U \ {u}), q = 0, 1, 2, . . . ,

the qth critical group of J at u, where Jc := {u ∈ E : J(u) ≤ c}, Hq(·, ·) stands
for the qth singular relative homology group with integer coefficients.

We say that u is a homological nontrivial critical point of J if at least one
of its critical groups is nontrivial.

Proposition 2.1 (Bartsch and Liu [2]). Let 0 be a critical point of J with

J(0) = 0. Assume that J has a local linking at 0 with respect to E = E1

⊕
E2,

k = dimE1 <∞, that is, there exists ρ > 0 small such that

J(u) ≤ 0, u ∈ E1, ‖u‖ ≤ ρ and J(u) > 0, u ∈ E2, 0 < ‖u‖ ≤ ρ.

Then Ck(J, 0) ≇ 0, that is, 0 is a homological nontrivial critical point of J .
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Definition 2.3 ([19]). ForA ∈ Σ, we say genus ofA is n (denoted by γ(A) = n)
if there is an odd map ϕ ∈ C(A,RN\{0}) and n is the smallest integer with
this property.

We say that J ∈ C1(E,R) satisfies (PS)-condition if any sequence {un} in
E such that

(2.15) J(un) → c, J ′(un) → 0 as n→ ∞

has a convergent subsequence.

Proposition 2.2. Let E be a real Banach space and J ∈ C1(E,R) satisfy the

(PS)-condition. If J is bounded from below, then c = infE J is a critical value

of J .

Proposition 2.3 (Zhang and Li [25]). Assume that J satisfies the (PS)-
condition and is bounded from below. If J has a critical point that is homolog-

ical nontrivial and is not the minimizer of J. Then J has at least three critical

points.

Proposition 2.4 ([20]). Let J be an even C1 functional on E and satisfy the

(PS)-condition. For any n ∈ N, set

Σn = {A ∈ Σ : γ(A) ≥ n}, cn = inf
A∈Σn

sup
u∈A

J(u).

(1) If Σn 6= ∅ and cn ∈ R, then cn is a critical value of J ;
(2) If there exists r ∈ N such that cn = cn+1 = · · · = cn+r = c ∈ R, and

c 6= J(0), then γ(Kc) ≥ r + 1.

3. Proof of main results

We begin this section by verifying the follow compactness lemma which
shows that the functional J satisfies (PS)-condition and is bounded from below.

Lemma 3.1. Assume that the conditions (V ) and (f1) hold, then J is bounded

from below and satisfies the (PS)-condition.

Proof. First, we show that J is bounded from below. By (2.3), (f1) and the
Hölder inequality, one has

J(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫

RN

F (x, u)dx

(3.1)

≥
a

2
‖u‖2 +

b

4
‖u‖4 −

m∑

i=1

∫

RN

ai(x)|u|
δidx

≥
a

2
‖u‖2 +

b

4
‖u‖4 − C5

m∑

i=1

(∫

RN

|ai(x)|
2

2−δi dx

) 2−δi
2
(∫

RN

V (x)|u|2dx

) δi
2
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≥
a

2
‖u‖2 +

b

4
‖u‖4 − C5

m∑

i=1

‖ai‖ 2
2−δi

‖u‖δi.

Since 1 < δi < 2 (i = 1, 2, . . . ,m), (3.1) implies that J(u) → +∞ as ‖u‖ → +∞.
Consequently, J is bounded from below.

Next, we prove that J satisfies the (PS)-condition. Assume that {un}n∈N ⊂
E is a sequence such that (2.15) holds. Then by (3.1), there exists a constant
M > 0 such that

(3.2) ‖un‖ ≤M, ∀n ∈ N.

Going if necessary to a subsequence we can assume that un ⇀ u0 in E.
Hence, by Rellich embedding theorem, we have

(3.3) un → u0, in Ls
loc(R

N ), s ∈ [2, 2∗).

By (f1), for any given ε > 0, we can choose ρ > 0 such that

(3.4)

(∫

|x|≥ρ

|ai|
2

2−δi dx

) 2−δi
2

< ε.

It follows from (2.12), (2.13), (3.2), (3.3) and the Hölder inequality that there
exists n0 ∈ N such that

∫

|x|≤ρ

|f(x, un)− f(x, u0)||un − u0|dx(3.5)

≤

(∫

|x|≤ρ

|f(x, un)− f(x, u0)|
2dx

) 1
2
(∫

|x|≤ρ

|un − u0|
2dx

) 1
2

≤ ε

(∫

|x|≤ρ

|f(x, un)− f(x, u0)|
2dx

) 1
2

≤ C6ε

[
m∑

i=1

(‖un‖
2δi−2
2 + ‖u0‖

2δi−2
2 )

] 1
2

≤ C7ε

[
m∑

i=1

(M2δi−2 + ‖u0‖
2δi−2
2 )

] 1
2

≤ C8ε

for n ≥ n0.
On the other hand, it follows from (2.1), (3.4) and the Hölder inequality

that ∫

|x|>ρ

|f(x, un)− f(x, u0)||un − u0|dx(3.6)

≤

∫

|x|>ρ

[|f(x, un)|+ |f(x, u0)|](|un − u0|)dx
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≤

m∑

i=1

δi

∫

|x|>ρ

|ai(x)|[|un|
δi + |u0|

δi + |un|
δi−1|u0|+ |u0|

δi−1|un|]dx

≤ ε
m∑

i=1

δi(‖un‖
δi
2 + ‖u0‖

δi
2 + ‖un‖

δi−1
2 ‖u0‖2 + ‖u0‖

δi−1
2 ‖un‖2)

≤ C9ε.

Since ε is arbitrary, combining (3.5) and (3.6) we get

(3.7)

∫

RN

|f(x, un)− f(x, u0)||un − u0|dx→ 0 as n→ +∞.

It follows from (2.4) that

min{b‖un‖
2 + a, b‖u0‖

2 + a}‖un − u0‖
2(3.8)

≤ 〈J ′(un)− J ′(u0), un − u0〉+

∫

RN

[f(x, un)− f(x, u0)](un − u0)dx.

Obviously,

(3.9) 〈J ′(un)− J ′(u0), un − u0〉 → 0 as n→ +∞.

Combining (3.7), (3.8) and (3.9), we obtain that un → u0 in E. Hence, J
satisfies (PS)-condition. The proof is complete. �

Now, we are in the position to give the proofs of Theorem 1.1, Theorem 1.2
and Theorem 1.3.

Proof of Theorem 1.1. In view of Lemma 2.1, J ∈ C1(E,R). By Lemma 3.1
and Proposition 2.1, we obtain c = infE J(u) is a critical value of J, that is,
there exists a critical point u∗ ∈ E such that J(u∗) = c.

Now, we show that u∗ 6= 0. Let u0 ∈ (W 1,2
0 (Ω) ∩E)\{0}. Then by (2.3) and

(f2), we infer that

(3.10)

J(tu0) =
at2

2
‖u0‖

2 +
λt4

4
‖u0‖

4 −

∫

RN

F (x, tu0)dx

≤
at2

2
‖u0‖

2 +
λt4

4
‖u0‖

4 − ηtκ
∫

Ω

|u0(x)|
κdx.

Since 1 < κ < 2, it follows from (3.10) that J(tu0) < 0 for t > 0 small enough.
Thus, we get that J(u∗) = c < 0. Therefore, u∗ is a nontrivial critical point of
J with J(u∗) = infE J(u) and is a nontrivial solution of problem (1.1). The
proof is complete. �

Proof of Theorem 1.2. Lemma 3.1 shows that J satisfies (PS) condition and
is bounded from below. From (2.4) and the definition of F (x, u), it is easy to
check that J(0) = 0. In what follows, we show that 0 is a homological nontrivial
critical point of J. Since E is a Hilbert space, we choose an orthogonal basis
{ej} of E and let E = E−

⊕
E+, where

(3.11) E− := span{e1, . . . , ek} and E+ := (E−)⊥.
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On one hand, for u ∈ E−, we have from (2.4) and (f3) that

(3.12)

J(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫

RN

F (x, u)dx

≤
a

2
‖u‖2 +

b

4
‖u‖4 − c1

∫

RN

uτdx

≤
a

2
‖u‖2 +

b

4
‖u‖4 − c1‖u‖

τ
τ .

Sine all norms on a finite dimensional space are equivalent, we deduce from
(3.12) that

J(u) ≤
a

2
‖u‖2 +

b

4
‖u‖4 − c1‖u‖

τ ,

which implies that J(u) ≤ 0 if we choose ‖u‖ small enough since 1 < τ < 2.
On the other hand, for u ∈ E+, from (2.1), (2.4) and (f3) we have

(3.13)

J(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫

RN

F (x, u)dx

≥
a

2
‖u‖2 +

b

4
‖u‖4 − c2

∫

RN

u2dx

≥
a

2
‖u‖2 +

b

4
‖u‖4 − c2γ

2
2‖u‖

2

≥ C9‖u‖
2 +

b

4
‖u‖4,

which means that J(u) ≤ 0 if we choose ‖u‖ small enough.
From (2.4) and the definition of E−, it is easy to see that J(0) = 0 and

k = dimE− <∞. Therefore, combining the above arguments and Proposition
2.1, we have Ck(J, 0) ≇ 0. This means that 0 is an homological nontrivial
critical point of J. Moreover, (3.12) shows that 0 is not the minimizer of J.
Thus all the conditions of Proposition 2.3 are satisfied and we get that the
problem (1.1) has two nontrivial solutions. We complete the proof. �

Proof of Theorem 1.3. By Lemma 2.1 and Lemma 3.1, we get that J ∈ C1(E,
R) is bounded from below and satisfies the (PS)-condition. It follows from
(2.3) and (f3) that J is even and J(0) = 0.

Now, we prove that for any n ∈ N there exists ε > 0 such that

(3.14) γ(J−ε) ≥ n.

For any n ∈ N, we take n disjoint open sets Ωi such that

n⋃

i=1

Ωi ⊂ Ω.

For each i ∈ {1, 2, . . . , n}, let ui ∈ (W 1,2
0 (Ωi) ∩ E)\{0} and ‖ui‖ = 1, and

En = span{u1, u2, . . . , un}, Sn = {u ∈ En : ‖u‖ = 1}.
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Thus, for any u ∈ En, there exist λi ∈ R, i = 1, 2, . . . , n such that

(3.15) u(x) =
n∑

i=1

λiui for x ∈ R
N .

Then we have

(3.16) ‖u‖κ =

(∫

RN

|u(x)|κdx

) 1
κ

=

(
n∑

i=1

|λi|
κ

∫

Ωi

|ui(x)|
κdx

) 1
κ

and

(3.17)

‖u‖2 =

∫

RN

[
|∇u(x)|2 + V (x)|u(x)|2

]
dx

=

n∑

i=1

λ2i

∫

Ωi

[
|∇ui(x)|

2 + V (x)|ui(x)|
2
]
dx

=

n∑

i=1

λ2i

∫

RN

[
|∇ui(x)|

2 + V (x)|ui(x)|
2
]
dx

=

n∑

i=1

λ2i ‖ui(x)‖
2

=

n∑

i=1

λ2i .

Since En is a finite dimensional normed space, one gets that all norms of En

are equivalent. Therefore, there is a constant ϑ > 0 such that

(3.18) ϑ‖u‖ ≤ ‖u‖κ for u ∈ En.

By (f3), (3.16), (3.17) and (3.18), we have

(3.19)

J(tu) =
at2

2
‖u‖2 +

λt4

4
‖u‖4 −

∫

RN

F (x, tu)dx

=
at2

2
‖u‖2 +

λt4

4
‖u‖4 −

n∑

i=1

∫

Ωi

F (x, tλiui(x))dx

≤
at2

2
‖u‖2 +

λt4

4
‖u‖4 − ηtκ

n∑

i=1

|λi|
κ

∫

Ωi

|ui(x)|
κdx

≤
at2

2
‖u‖2 +

λt4

4
‖u‖4 − ηtκ‖u‖κκ

≤
at2

2
‖u‖2 +

λt4

4
‖u‖4 − ηϑκtκ‖u‖κ

=
a

2
t2 +

λ

4
t4 − ηϑκtκ, ∀u ∈ Sn.
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So for t small enough, (3.19) implies that there exist ε > 0 and τ > 0 such that

(3.20) J(τu) < −ε for u ∈ Sn.

Let

Sτ
n = {τu : u ∈ Sn}, Q = {(λ1, λ2, . . . , λn) :

n∑

i=1

λ2i < τ2}.

It follows from (3.20) that J(u) < −ε for u ∈ Sτ
n, which, together with the fact

that J ∈ C1(E,R) and J is even, implies that

Sτ
n ⊂ J−ε ∈ Σ.

On the other hand, from (3.15) and (3.17), there exits an odd homeomor-
phism mapping ψ ∈ C(Sτ

n, ∂Q). By the monotonicity of genus and Proposition
7.7 in [19], we deduce

(3.21) γ(J−ε) ≥ γ(Sτ
n) = n.

Thus, (3.14) holds.
Set

cn = inf
A∈Σn

sup
u∈A

J(u).

It follows from (3.21) and the fact that J is bounded from below on E that
−∞ < cn ≤ −ε < 0, that is, for any n ∈ N, cn is a real negative number.

Therefore, J has infinitely many nontrivial critical points by Proposition 2.2.
So, problem (1.1) possesses infinitely many nontrivial solutions. �

4. Example

In this section, an example is given to illustrate our main results.

Example 4.1. In problem (1.1), let V (x) = 3 + sin |x|2 and let α = 1. Then,
condition (V ) satisfies. For ∀(x, u) ∈ R

N × R, let

f(x, u) =
1 + sin2 |x|

1 + |x|
3
2

|u|
−3
4 u+

4

3e|x|
|u|

−2
3 u+

3 cos |x|

2e3|x|
|u|

−1
2 u.

Clearly,

|f(x, u)| ≤
2

1 + |x|
3
2

|u|
1
4 +

4

3e|x|
|u|

1
3 +

3

2e3|x|
|u|

1
2

and

F (x, u) =
1 + sin2 |x|

1 + |x|
3
2

4

5
|u|

5
4u+

4

e|x|
|u|

4
3 +

cos |x|

e3|x|
|u|

3
2

≥
1

e|x|
|u|

4
3 , ∀(x, u) ∈ Bπ

2
× [−1, 1].

Here, we can choose a large enough such that 0 < c1 < c2 <
a

ςγ2
2
holds, where

c1 = η = 1
e|x|

, c2 = 6max{a1, a2, a3}. Thus (f1), (f2), (f3) and (f4) are
satisfied with

δ1 =
1

4
, δ2 =

1

3
, δ3 =

1

2
,
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a1 =
8

5(1 + |x|
3
2 )
, a2 =

4

3e|x|
, a3 =

3

2e3|x|
,

ζ = 1, Ω = Bπ
2
, η =

1

e|x|
, κ =

4

3
.

By Theorem 1.1, Theorem 1.2 and Theorem 1.3, problem (1.1) has at leat one,
two and infinitely many nontrivial solutions.
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